0
Research Papers

The Added Value of Infrared Thermography to Assess the Impact Performance of Composites

[+] Author and Article Information
Simone Boccardi, Natalino D. Boffa, Giovanni M. Carlomagno, Carosena Meola, Fabrizio Ricci

Department of Industrial Engineering—
Aerospace Division,
University of Naples Federico II,
Naples 80125, Italy

Pietro Russo, Giorgio Simeoli

Institute for Polymers,
Composites and Biomaterials,
National Council of Research,
Pozzuoli (Na) 80078, Italy

Manuscript received August 30, 2017; final manuscript received September 13, 2017; published online December 20, 2017. Assoc. Editor: Wieslaw Ostachowicz.

ASME J Nondestructive Evaluation 1(2), 021003 (Dec 20, 2017) (8 pages) Paper No: NDE-17-1081; doi: 10.1115/1.4038577 History: Received August 30, 2017; Revised November 13, 2017

Composite materials are becoming ever more popular in an increasing number of applications. This because of their many advantages, amongst others the possibility to create a new material of given characteristics in a quite simple way by changing either the type of matrix, or reinforcement, and/or rearranging the reinforcement in a different way. Of course, once a new material is created, it is necessary to characterize it to verify its suitability for a specific exploitation. In this context, infrared thermography (IRT) represents a viable means since it is noncontact, nonintrusive, and can be used either for nondestructive evaluation to detect manufacturing defects, or fatigue-induced degradation, or else for monitoring the inline response to applied loads. In this work, IRT is used to investigate different types of composite materials, which involve carbon fibers embedded in a thermoset matrix and either glass or jute fibers embedded in a thermoplastic matrix, which may be neat, or modified by the addition of a percentage of a specific compatibilizing agent. IRT is used with a twofold function. First, for nondestructive evaluation, with the lock-in technique, before and after loading to either assure absence of manufacturing defects, or discover the damage caused by the loads. Second, for visualization of thermal effects, which develop when the material is subjected to impact. The obtained results show that it is possible to follow inline what happens to the material (bending, delamination, and eventual failure) under impact and get information, which may be valuable to deepen the complex impact damaging mechanisms of composites.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Richardson, M. O. W. , and Wisheart, M. J. , 1996, “ Review of Low-Velocity Impact Properties of Composite Materials,” Compos. Part A, 27(12), pp. 1123–1131. [CrossRef]
Abrate, S. , 1998, Impact on Composite Structures, Cambridge University Press, Cambridge, UK. [CrossRef]
Scheira, J. , 2000, Compositional and Failure Analysis of Polymers, Wiley, Chichester, UK.
Schoeppner, G. A. , and Abrate, S. , 2000, “ Delamination Threshold Loads for Low Velocity Impact on Composite Laminates,” Compos. Part A, 31(9), pp. 903–915. [CrossRef]
Knauss, W. G. , and Gonzales, L. , 2001, “ Global Failure Modes in Composite Structures,” NASA Langley Research Center, Hampton, VA, Technical Report. https://ntrs.nasa.gov/search.jsp?R=20020020093
Elder, D. J. , Thomson, R. S. , Nguyen, M. Q. , and Scott, M. L. , 2004, “ Review of Delamination Predictive Methods for Low Speed Impact of Composite Laminates,” Compos. Struct., 66(1–4), pp. 677–683. [CrossRef]
Feraboli, P. , and Kedward, K. T. , 2006, “ A New Composite Structure Impact Performance Assessment Program,” Compos. Sci. Technol., 66(10), pp. 1336–1347. [CrossRef]
Meola, C. , Boccardi, S. , Carlomagno, G. M. , Boffa, N. D. , Monaco, E. , and Ricci, F. , 2015, “ Nondestructive Evaluation of Carbon Fibre Reinforced Composites With Infrared Thermography and Ultrasonics,” Compos. Struct., 134, pp. 845–853. [CrossRef]
Boccardi, S. , Boffa, N. D. , Carlomagno, G. M. , Maio, L. , Meola, C. , and Ricci, F. , 2015, “ Infrared Thermography and Ultrasonics to Evaluate Composite Materials for Aeronautical Applications,” J. Phys. Conf. Ser., 658, p. 012007. [CrossRef]
Maldague, X. , 2002, “ Introduction to NDT by Active Infrared Thermography,” Mater. Eval., 6, pp. 1060–1073. http://w3.gel.ulaval.ca/~maldagx/r_1221t.pdf
Meola, C. , Boccardi, S. , and Carlomagno, G. M. , 2016, Infrared Thermography in the Evaluation of Aerospace Composite Materials, Woodhead Publishing, Duxford, UK.
Meola, C. , and Carlomagno, G. M. , 2009, “ Infrared Thermography to Impact-Driven Thermal Effects,” Appl. Phys. A, 96(3), pp. 759–762. [CrossRef]
Meola, C. , and Carlomagno, G. M. , 2010, “ Impact Damage in GFRP: New Insights With Infrared Thermography,” Compos. Part A, 41(12), pp. 1839–1847. [CrossRef]
Meola, C. , Boccardi, S. , Boffa, N. D. , Ricci, F. , Simeoli, G. , Russo, P. , and Carlomagno, G. M. , 2016, “ New Perspectives on Impact Damaging of Thermoset- and Thermoplastic-Matrix Composites From Thermographic Images,” Compos. Struct., 152, pp. 746–754. [CrossRef]
Boccardi, S. , Boffa, N. D. , Carlomagno, G. M. , Meola, C. , Ricci, F. , Russo, P. , and Simeoli, G. , 2017, “ Infrared Thermography to Impact Damaging of Composite Materials,” Proc. SPIE, 10170, p. 1017004.
Busse, G. , 1979, “ Optoacoustic Phase Angle Measurement for Probing a Metal,” Appl. Phys. Lett., 35(10), pp. 759–760. [CrossRef]
Letho, A. , Jaarinen, J. , Tiusanen, T. , Jokinen, M. , and Luukkala, M. , 1981, “ Magnitude and Phase in Thermal Wave Imaging,” Electron. Lett., 17(11), pp. 364–365. [CrossRef]
Beaudoin, J.-L. , Merienne, E. , Danjoux, R. , and Egee, M. , 1985, “ Numerical System for Infrared Scanners and Application to the Subsurface Control of Materials by Photothermal Radiometry,” Proc. SPIE, 0590, pp. 287–292.
Meola, C. , Boccardi, S. , Carlomagno, G. M. , Boffa, N. D. , Monaco, E. , and Ricci, F. , 2016, “ Experimental Investigation of Impact Damaging of Carbon Fibre Reinforced Composites,” 19th WCNDT World Conference on Non-Destructive Testing, Munich, Germany, June 13–17, p. 8. http://www.ndt.net/article/wcndt2016/papers/we2i3.pdf
Meola, C. , Boccardi, S. , Carlomagno, G. M. , Boffa, N. D. , Ricci, F. , Simeoli, G. , and Russo, P. , 2017, “ Impact Damaging of Composites Through Online Monitoring and Non-Destructive Evaluation With Infrared Thermography,” NDTE Int., 85, pp. 34–42. [CrossRef]
Naik, N. K. , Chandra Sekher, Y. , and Sailendra, Meduri , 2000, “ Damage in Woven-Fabric Composites Subjected to Low-Velocity Impact,” Compos. Sci. Technol., 60(5), pp. 731–744. [CrossRef]
Naik, N. K. , Ramasimha, R. , Arya, H. , Prabhu, S. V. , and ShamaRao, N. , 2001, “ Impact Response and Damage Tolerance Characteristics of Glass–Carbon/Epoxy Hybrid Composite Plates,” Compos. Part B, 32(7), pp. 565–574. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Setup for impact tests showing the modified Charpy pendulum with the impactor and the specimen fixture having a window to allow for the infrared camera viewing the rear specimen surface

Grahic Jump Location
Fig. 2

Phase images taken at f = 0.12 Hz on the impacted side of different specimens: (a) CFRPF; E = 24 J, (b) PPG; E = 8.3, 11.7 J, (c) PGC2; E = 11.7, 8.3 J, (d) PPJ; E = 2, 3 J, and (e) PJC2; E = 2, 3, 5 J

Grahic Jump Location
Fig. 3

Phase images taken at f = 0.12 Hz on the rear to impact side of different specimens: (a) CFRPF; E = 24 J, (b) PPG; E = 8.3, 11.7 J, (c) PGC2; E = 11.7, 8.3 J, (d) PPJ; E = 2, 3 J, and (e) PJC2; E = 2, 3, 5 J

Grahic Jump Location
Fig. 4

Photos of PPG and PGC2 specimens impacted at 11.7 J: (a) PPG: impacted side, (b) PPG: rear side, (c) PGC2: impacted side, and (d) PGC2: rear side

Grahic Jump Location
Fig. 5

Some ΔT images of the CFRPF specimen, impacted at E = 24 J: (a) t = 0.000 s, (b) t = 0.001 s, (c) t = 0.002 s, (d) t = 0.003s, (e) t = 0.004 s, (f) t = 0.005 s, (g) t = 0.007 s, (h) t = 0.009 s, (i) t = 0.012 s, (j) t = 0.015 s, (k) t = 0.025 s, (l) t = 0.106 s, (m) t = 0.312 s, (n) t = 0.627 s, and (o) t = 1.148 s

Grahic Jump Location
Fig. 6

Some ΔT images of the PPG specimen, impacted at E = 11.7 J: (a) t = 0.000 s, (b) t = 0.001 s, (c) t = 0.002 s, (d) t = 0.003 s, (e) t = 0.005 s, (f) t = 0.007 s, (g) t = 0.009 s, (h) t = 0.011 s, (i) t = 0.013 s, (j) t = 0.016 s, (k) t = 0.018 s, (l) t = 0.022 s, (m) t = 0.032s, (n) t = 0.241 s, and (o) t = 1.282 s

Grahic Jump Location
Fig. 7

Some ΔT images of the PGC2 specimen, impacted at E = 11.7 J: (a) t = 0.000 s, (b) t = 0.003 s, (c) t = 0.005 s, (d) t = 0.006 s, (e) t = 0.007 s, (f) t = 0.008 s, (g) t = 0.009 s, (h) t = 0.010 s, (i) t = 0.015 s, (j) t = 0.017 s, (k) t = 0.019 s, (l) t = 0.031 s, (m) t = 0.147 s, (n) t = 0.617 s, and (o) t = 2.074 s

Grahic Jump Location
Fig. 8

Some ΔT images of the PPJ specimen, impacted at E = 3 J: (a) t = 0.000 s, (b) t = 0.002 s, (c) t = 0.004 s, (d) t = 0.005 s, (e) t = 0.007 s, (f) t = 0.008 s, (g) t = 0.010 s, (h) t = 0.014 s, (i) t = 0.017 s, (j) t = 0.032 s, (k) t = 0.046 s, (l) t = 0.066 s, (m) t = 0.128 s, (n) t = 0.741 s, and (o) t = 1.783 s

Grahic Jump Location
Fig. 9

A comparison between ΔT images at t = 0.07 s of PPG and PGC2 specimens for E = 11.7 J: (a) PPG and (b) PGC2

Grahic Jump Location
Fig. 10

ΔTMin and ΔTMax plots of the CFRPF specimen: E = 18 and 24 J

Grahic Jump Location
Fig. 11

ΔTMin and ΔTMax plots of the PPG specimen: E = 8.3 and 11.7 J

Grahic Jump Location
Fig. 12

ΔTMin and ΔTMax plots of the PGC2 specimen: E = 8.3 and 11.7 J

Grahic Jump Location
Fig. 13

ΔTMin and ΔTMax plots of the PPJ specimen: E = 2 and 3 J

Grahic Jump Location
Fig. 14

ΔTMin and ΔTMax plots of the PJC2 specimen: E = 2 and 3 J

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In