The ability to combine energy sources with intermittent performance with more consistent form of power is crucial for increasing the penetration of renewable energy sources in the electricity and heat generation sector. In this scenario, district heating networks are a promising solution but, to benefit the most from this technology, control tools must be developed with the objective of optimizing the heating load to each of the buildings in the network, while rejecting external disturbances. One of the main challenges for control design and verification is the limited access to data and experimental platforms. In addition, real systems are subjected to a large number of exogenous inputs and tests repeatability for benchmarking is a challenge. To overcome this limitation, a scaled experimental set up has been developed. This paper discusses the design of the experimental setup of a simple heat distribution network as well as the derivation, calibration and validation of a simulation model. Simulation results show that the model error in predicting temperature is always below 1 %.

This content is only available via PDF.
You do not currently have access to this content.