A phenomenological model is presented that relates freestream turbulence to the augmentation of stagnation-point surface flux quantities. The model requires the turbulence intensity, the longitudinal scale of the turbulence, and the energy spectra as inputs for the unsteady velocity at the edge of the near-wall viscous region. The form of the edge velocity contains both pulsations of the incoming flow and oscillations of the streamline.

Incompressible results using a single fluctuating component are presented within the stagnation region of a two-dimensional cylinder. The time-averaged Froessling number is determined from the computations. These predictions are compared to existing incompressible experimental data. Additionally, the variations in the surface flux quantities with the longitudinal scale of the incoming freestream turbulence, the Reynolds number, and the freestream turbulence intensity are considered.

This content is only available via PDF.