The solid-gas contacting for thermal storage and thermal recovery is generally carried out in fixed-bed regenerators. Compared to a fixed bed, higher thermal recovery can be achieved in a moving bed with countercurrent flow of gas and solids. However, the moving beds have not been widely used due to difficulties in solid handling. The relative movement of the bed to the gas flow can be simulated in a fixed bed by moving the inlet and outlet ports of the gas along the length of the bed. Similar simulated moving-beds are already in use for adsorptive separation of liquid mixtures in chemical industries. A Novel Moving-Port system is proposed to achieve simulated moving-bed operation in a fixed bed. We have carried out studies to evaluate the relative performance of the fixed and the simulated moving bed heat regenerators. We have examined the feasibility of replacing a set of three blast furnaces and thermal regeneration of an adsorption bed with the simulated moving-bed regenerator. It is found that high heat transfer intensification can be achieved. The results indicate that the volume of the Simulated Moving-Bed regenerator required is about 100 times smaller than the blast-furnace stoves. The heat transfer intensification is high enough to carry out thermal regeneration of the adsorption beds in a cycle time that is in the range of the pressure swing adsorption, which is favored for its faster rate of regeneration.

This content is only available via PDF.
You do not currently have access to this content.