Abstract

The two dimensional laminar and turbulence stagnation-point flow over a wafer surface within a cleanroom environment are numerically simulated. This study shows the relationship between particle capture area on the wafer and the particle size and flow conditions. The mean flow field is simulated using a two equation k-ϵ turbulence model. Trajectories of aerosol particles are evaluated by solving the corresponding Lagrangian equation of motion that includes effects of drag, gravity, lift force, Brownian motion and turbulence fluctuations. The Brownian motion is modeled as a white noise process and turbulence fluctuation is assumed to behave as Gaussian random process. Simulations are carried out for aerosol particles (of various sizes) released at different locations over the surface. Depositions of particles on the wall are evaluated and a capture area which varies with particle sizes is produced. The results show that Brownian motion becomes very significant when turbulence fluctuations start to disappear near the wall for particles smaller than 1 μm in diameter. The results also show that, deposition of particles in turbulent flows are usually higher than that in laminar flows for all particle sizes considered. The effect of fluid on particle deposition rate is predicted for fluid of air and water. The results show that, particles deposition rate in air is higher than that in water.

This content is only available via PDF.
You do not currently have access to this content.