Abstract

Pulse oximeters and other light based sensor types are used to monitor arterial blood oxygen levels, heart rate, and much more that rely on LEDs and photodiodes. The conventional method of using photodiodes to detect light signals is accurate, but requires relatively expensive hardware processing to extract the signal. Digital sensing of light using an LED provides a low-cost alternative by using a voltage threshold timing method. However, the accuracy of this method is dependant on the microcontroller clock speed and suffers from variable sample rate (100 us to 10 ms). This paper develops a model for a digital light sensing method using only a microcontroller’s ADC and timer, and an LED. Using the voltage discharge curve of a reverse biased LED, the sensor is capable of accurately detecting light intensities ranging from 0–3885 mcd at a sample period of 500 us. A linear relationship was found through the incident light intensity ranges of 0 to 3880 mcd. The model fit the expected experimental values, with an estimated photocurrent ranging from 10 pA to 55 nA. With an R2 of 0.9997, the model demonstrates the digital sensing method linearly responds to incident light intensity and can simplify the design of pulse oximeters and similar light based sensor types.

This content is only available via PDF.
You do not currently have access to this content.