Abstract

The effect of membrane load on the behaviour of axisymmetric bistable circular curved microplates on Berger’s based axisymmetric reduced order (RO) model, incorporating radial prestress, is studied. The model is first validated for a “mechanical” load, against a Föppl-von-Kármán’s RO model with twenty degrees of freedom (DOF), a finite differences (FD) solution and a finite elements (FE) model, serving as the reference. All solutions implement the “Riks” method to track possible unstable branches, which can swerve in due to the presence of higher buckling modes. A convergence study is carried out for the snap-through location and load, as well as for the critical elevation and prestress required for bistability. Based on validated results of the analysis, the reliability of the model for predicting the effect of prestress on the plate behaviour under nonlinear electrostatic load is then investigated while using FD solutions as the reference. The study furnishes a reliable expended RO model, which includes prestress on the as-fabricated curved plate. The resulting model can further be used to estimate the value of residual prestress, present in an electrostatically actuated curved plate, based on its response.

This content is only available via PDF.
You do not currently have access to this content.