Abstract

Extensive development of biomedical and chemical analytic microdevices involves microscale fluid flows. Merging of fluid streams is expected to be a key feature in such devices. An integrated microsystem consisting of merging microchannels and distributed pressure microsensors has been designed and characterized to study this phenomenon on a microscale. The two narrow, uniform and identical channels merged smoothly into a wide, straight and uniform channel downstream of a splitter plate. All of the devices were fabricated using standard micromachining techniques. Mass flow rates and pressure distributions were measured for single-phase gas flow in order to characterize the device. The experimental results indicated that the flow developed when both inlets were connected together to the gas source could be modeled as gas flow through a straight and uniform microchannel. The flow through a single branch while the other was blocked, however, could be modeled as gas flow through a pair of microchannels in series. Flow visualizations of two-phase flows have been conducted when driving liquid and gas through the inlet channels. Several instability modes of the gas/liquid interface have been observed as a function of the pressure difference between the two streams at the merging location.

This content is only available via PDF.
You do not currently have access to this content.