Robotic bin picking requires using a perception system to estimate the posture of parts in the bin. The selected singulation plan should be robust with respect to perception uncertainties. If the estimated posture is significantly different from the actual posture, then the singulation plan may fail during execution. In such cases, the singulation process will need to be repeated. We are interested in selecting singulation plans that minimize the expected task completion time. In order to estimate the expected task completion time for a proposed singulation plan, we need to estimate the probability of success and the plan execution time. Robotic bin picking needs to be done in real-time. Therefore candidate singulation plans need to be generated and evaluated in real-time. This paper presents an approach for utilizing computationally efficient simulations for on-line evaluation of singulation plans. Results from physical experiments match well with predictions obtained from simulations.

This content is only available via PDF.
You do not currently have access to this content.