In this paper the development of a linear shape function, Galerkin Boundary Element Method (BEM) for solving the direct potential flow integral equation around arbitrary 3-Dimensional bodies is described. The solution of the potential flow for both constant and linear shape functions over a triangulated body surface is examined. In order to facilitate a larger and more practical number of panels, an iterative GMRES [1] matrix solution method is coupled with a precorrected Fast Fourier Transform (pFFT) approximate matrix vector product (MVP)[2]. The pFFT algorithm is described and the differences in attaining MVP’s for linear and constant strength panel distributions are highlighted. A simple flat sheet wake model is included to solve the lifting body problem. The pFFT is shown to reduce the solution time to O(nlog(n)) operations (n is the number of panels). The results from flat panel surface representations of the body show that the convergence rate of the solution is at best O(n) for both linear and constant basis function representations of the solution. When the constant basis solution is sampled at the centroid of the panel, the error converges at a similar rate to the linear basis solution error, namely (O(n)); however, when the solution is sampled at surface points other than the centroid, the constant basis representation will converge at a slower rate O(n1/2), while the linear basis solution converges at a rate of O(n) for all points on the body.
Skip Nav Destination
ASME/JSME 2004 Pressure Vessels and Piping Conference
July 25–29, 2004
San Diego, California, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4686-5
PROCEEDINGS PAPER
A pFFT Accelerated BEM Linear Strength Potential Flow Solver
David J. Willis,
David J. Willis
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Jacob K. White,
Jacob K. White
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Jaime Peraire
Jaime Peraire
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
David J. Willis
Massachusetts Institute of Technology, Cambridge, MA
Jacob K. White
Massachusetts Institute of Technology, Cambridge, MA
Jaime Peraire
Massachusetts Institute of Technology, Cambridge, MA
Paper No:
PVP2004-3115, pp. 1-10; 10 pages
Published Online:
August 12, 2008
Citation
Willis, DJ, White, JK, & Peraire, J. "A pFFT Accelerated BEM Linear Strength Potential Flow Solver." Proceedings of the ASME/JSME 2004 Pressure Vessels and Piping Conference. Computational Technologies for Fluid/Thermal/Structural/Chemical Systems With Industrial Applications, Volume 2. San Diego, California, USA. July 25–29, 2004. pp. 1-10. ASME. https://doi.org/10.1115/PVP2004-3115
Download citation file:
3
Views
Related Proceedings Papers
Related Articles
Analytical Formulae for Potential Integrals on Triangles
J. Appl. Mech (July,2013)
Prediction of Cavitation in Journal Bearings Using a Boundary Element Method
J. Tribol (July,1995)
Fast Methods for Solving Rough Contact Problems: A Comparative Study
J. Tribol (January,2000)
Related Chapters
Introduction
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Conclusion
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Global Mode Visualization in Cavitating Flows
Proceedings of the 10th International Symposium on Cavitation (CAV2018)