The Calcine Disposition Project (CDP) of the Idaho Cleanup Project (ICP) has the responsibility to retrieve, treat, and dispose of the calcine stored at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory. Calcine is the granular product of thermally treating, or calcining liquid high-level waste (HLW) that was produced at INTEC during the reprocessing of spent nuclear fuel (SNF) to recover uranium. The CDP is currently designing the Hot Isostatic Pressure (HIP) treatment for the calcine to provide monolithic, glass-ceramic waste form suitable for transport and disposition outside of Idaho by 2035 in compliance with the Idaho Settlement Agreement.

The HIP process has been used by industry since its invention, by Battelle Institute, in 1955. Hot isostatic pressing can be used for upgrading castings, densifying pre-sintered components, and consolidate powders. It involves the simultaneous application of a high pressure and temperature in a specially constructed vessel. The pressure is applied on all sides with a gas (usually inert) and, so, is isostatic. The CDP will use this treatment process (10,000 psi at 1,150 C) to combine physically and chemically a mixture of calcine and granular additives into a non leachable waste-form.

The HIP process for calcine involves filling a metal can with calcine and additives, heating and evacuating the can to remove volatiles, sealing the can under vacuum, and placing the can within the HIP machine for treatment. Although the HIP process has been in use for over 50 years it has not been applied in large scale radioactive service. Challenges with retrofitting such a system for Calcine treatment include 1) filling and sealing the HIP can cleanly and remotely, 2) remotely loading and unloading the HIP machine, and 3) performing maintenance and repair on a 300 ton, hydraulically actuated machine in a highly radioactive hot cell environment.

In this article, a systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques is summarized. Discussions on how these techniques were used to improve high-consequence risk management and more effectively apply failure mode, RAMI, and time and motion analyses at the earliest possible stages of design are provided.

This content is only available via PDF.
You do not currently have access to this content.