In order to ensure the integrity of structures, failure assessment is required. In this context, the fracture behavior of an electron beam (EB) welded joint on thick plate of aluminum alloy 6061-T6 used for structural components of experimental nuclear reactors was investigated. In the particular case of welded structures, the tearing resistance is strongly dependent on the mismatch of the welded joint and the local behavior of each metallurgical zone.

For a reliable analysis, the tensile mechanical behavior of each position of the welded joint was precisely determined by the use of a new measurement prototype. The toughness behavior under different configurations was then evaluated on CT specimens. From these experimental results a mechanical behavior contrast was highlighted. In fact, the fusion zone presents the lowest yield stress and a gradient is observed in the heat affected zone until the material behavior reaches of the base metal yield stress. On the contrary, the toughness of the welded zone is the highest and decreases strongly in the heat affected zone according to an exponential function until the base metal toughness is reached.

This content is only available via PDF.
You do not currently have access to this content.