Although several ad hoc procedures are codified into main international standards, the creep life prediction remains a critical phase of each Fitness-For-Service assessment. Commonly, either a time-fraction or a ductility exhaustion approach can be used. In both cases, conservative predictions within a factor of 2 or 3 are expected [1]. However, since the procedures to determine the creep damage are based upon the results of a stress analysis, the residual life evaluation can be affected by the adopted creep formulation. The choice to use a simple modeling, only accounting for the dislocational creep range, could lead to overestimate the component creep life at low stresses, and this is also subtly true even at concentration points if triaxiality or deformation-controlled loading lead to marked stress relaxation over time. In this paper, the tube to header and the header to hemispherical end joints of a HRSG assembly were assessed by the API 579-1/ASME FFS-1 [2] Level 3 procedure, via inelastic FEA, changing the creep formulation to compare the results. The classical Nortons law was replaced by more sophisticated secondary creep models to account for the complex time-dependent stress-field. In particular, the primary and secondary stress re-distribution/relaxation in the creep range were investigated in order to evaluate the impact of the steady-state creep constitutive equation on the residual life prediction.
Skip Nav Destination
ASME 2017 Pressure Vessels and Piping Conference
July 16–20, 2017
Waikoloa, Hawaii, USA
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
978-0-7918-5795-3
PROCEEDINGS PAPER
Effects of Secondary Creep Formulation on API 579-1 Residual Life Evaluation
Lorenzo Scano,
Lorenzo Scano
Studio Scano Associato, Udine, Italy
Search for other works by this author on:
Luca Esposito
Luca Esposito
University of Naples “Federico II”, Naples, Italy
Search for other works by this author on:
Lorenzo Scano
Studio Scano Associato, Udine, Italy
Luca Esposito
University of Naples “Federico II”, Naples, Italy
Paper No:
PVP2017-65512, V03BT03A018; 11 pages
Published Online:
October 26, 2017
Citation
Scano, L, & Esposito, L. "Effects of Secondary Creep Formulation on API 579-1 Residual Life Evaluation." Proceedings of the ASME 2017 Pressure Vessels and Piping Conference. Volume 3B: Design and Analysis. Waikoloa, Hawaii, USA. July 16–20, 2017. V03BT03A018. ASME. https://doi.org/10.1115/PVP2017-65512
Download citation file:
20
Views
0
Citations
Related Proceedings Papers
Related Articles
Failure Investigation of a Low Chrome Long-Seam Weld in a
High-Temperature Refinery Piping System
J. Pressure Vessel Technol (August,1995)
Measurement of Creep and Relaxation Behaviors of Wafer-Level CSP Assembly Using Moire´ Interferometry
J. Electron. Packag (June,2003)
Determination of Lower-Bound Ductility for AZ31 Magnesium Alloy by Use of the Bulge Specimens
J. Eng. Mater. Technol (July,2007)
Related Chapters
Defect Assessment
Pipeline Integrity Assurance: A Practical Approach
Analysis of Components: Strain- and Deformation-Controlled Limits
Design & Analysis of ASME Boiler and Pressure Vessel Components in the Creep Range
Global Harmonization of Flaw Modeling/Characterization
Global Applications of the ASME Boiler & Pressure Vessel Code