Pipelines carrying oil and gas are susceptible to fatigue failure (i.e., unstable fatigue crack propagation) due to fluctuating loading such as varying internal pressure and other external loadings. Fatigue crack growth (FCG) prediction through full-scale pipe tests can be expensive and time consuming, and experimental data is limited particularly in the face of large uncertainty involved. In contrast, numerical simulation techniques (e.g., XFEM) can be alternative to study the FCG, given that numerical models can be theoretically and/or experimentally validated with reasonable accuracy. In this study, capabilities and limitations of existing fatigue analysis code (e.g., direct cyclic approach with XFEM) in Abaqus for low cycle fatigue simulation are explored for compact-tension (CT) specimens and pipelines assuming linear elastic material behavior. The simulated FCG curve for a CT specimen is compared with that obtained from the analytical method using the stress intensity factor prescribed in ASTM E647. However, for real pipelines with elastic-plastic behavior, direct cyclic approach is not suitable, and an indirect cyclic approach is used based on the fracture energy parameters (e.g., J integral) calculated using XFEM in Abaqus. FCG law (e.g., power law relationship like Paris law) is used to generate the fatigue crack growth curve. For comparison, the FCG curve obtained through direct cyclic approach for pipelines assuming linear elastic material is also presented. The comparative studies here indicate that XFEM-based FCG simulation using appropriate techniques can be applied to pipelines for fatigue life prediction.

This content is only available via PDF.
You do not currently have access to this content.