The Pacific Northwest National Laboratory (PNNL) is the design authority for a new Type B hazardous materials transportation package designated as the Defense Programs Package 3 (DPP-3) for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA). The DPP-3 has been developed using similar materials and fabrication methods employed in previous U.S. Nuclear Regulatory Commission (NRC), DOE, and NNSA certified packages. The DPP-3 design criteria are derived from the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC), NNSA guidance and NRC regulatory guides in order to safely and securely transport a variety of payloads. Final regulatory approval by the NNSA will require regulatory testing to demonstrate that the containment vessel (CV) remains leaktight after enduring the entire regulatory testing sequence prescribed in Title 10 of the Code of Federal Regulations Part 71 (10 CFR 71). In order to gain confidence that the DPP-3 will remain leaktight after testing, the DPP-3 has been structurally analyzed using the Finite Element Analysis (FEA) software LS-DYNA. The FEA analyses serve two general purposes: first, they aid in design and development of the package, and second, they advise as to which drop orientations are expected to cause the most damage during regulatory testing. This paper will discuss how the design criteria are incorporated into analytical techniques needed to evaluate the FEA structural simulation results for 10 CFR 71 conditions to give confidence the DPP-3 testing campaign will be successful.

This content is only available via PDF.
You do not currently have access to this content.