As important equipment in the entire hydrogen industry chain, composite hydrogen storage cylinders for transportation have developed rapidly in recent years. The fire test is used to verify the explosion resistance of gas cylinders under specified fire conditions. Compared to steel gas cylinder, composite gas cylinder is more dangerous in the fire condition. The wound layer, as the main pressure-bearing structure of the composite hydrogen storage cylinder, is inflammable. In the case of fire, the mechanical properties of the cylinder will degrade quickly due to the high temperature. If the gas inside the cylinder cannot be discharged in time, the cylinder explosion will occur. Currently, some relevant standards or standard drafts have been drawn up by the international organizations, which are useful for formulating Chinese standard for hydrogen storage cylinders for transportation. The applicable scope of the standards was discussed in this paper, such as composite cylinder type, working pressure, nominal volume and design life, etc. The fire test methods of composite gas cylinders in various standards were compared and analyzed, such as experiment method, cylinder placement method, cylinder filling requirements, fuel selection, fire source setting, temperature measurement requirements, and qualified indicators, etc. Finally, the challenges for development of composite hydrogen storage cylinders and compressed hydrogen storage systems in China were proposed.

This content is only available via PDF.
You do not currently have access to this content.