Abstract

Flow-induced vibration is an important issue related to the safety and reliability of nuclear reactor, which need to be analyzed and evaluated in the design stage. In order to obtain the input loads and key parameters used in the calculation of flow-induced vibration of reactor vessel internals (RVIs) that need to satisfy the engineering requirements. The typical RVIs are selected as the research object, and the fluid exciting force characteristics are studied based on the computational fluid dynamics methods. The results show that the fluid exciting force acting on the RVIs is a wide-band stochastic process. For upper internal, the largest pressure fluctuation occurs at the guide tubes and support columns located near the outlet. Therefore, it is necessary to pay more attention to these guide tubes and support columns in response analysis. As for core barrel, the root mean square value of the pressure fluctuation changes drastically at the inlet and outlet location. For lower internal, the lower flow field of RVIs is relatively disordered, and its pressure fluctuation possesses irregular characteristics. Each component of lower internal need to be considered in analysis and evaluation.

This content is only available via PDF.
You do not currently have access to this content.