The meniscus is a crucial anatomical structure in the mechanics of vertebrate hind legs [3]. Menisci function primarily by distributing the tibio-femoral contact forces, and thereby reducing the stress in the articular cartilage of the knee joint. As the meniscus is a flexible body that undergoes large strains, it is typically ignored in rigid-body biomechanical simulations. One documented method of including this factor in the multi-body framework is to represent the menisci as discrete bodies connected by linear 6-axis spring and damper elements [2]. The difficulty arises in determining the stiffnesses and viscosities that correspond to the material properties of the real meniscus. Material properties have previously been determined by a design of experiments approach to match the force displacement behavior of a multi-body model to a linear finite element model. This study explores a method of determining the said properties from experimental data collected in a semi-physiological loading, where the force orientation is principally circumferential tension and compression in the other directions.

This content is only available via PDF.
You do not currently have access to this content.