We present the numerical and experimental analyses of the collapse of a water column over an obstacle. The physical model consists of a water column initially confined by a closed gate inside a glass box. An obstacle is placed between the gate and the right wall of the box, inside the initially unfilled zone. Once the gate is opened, the liquid spreads in the container and over the obstacle. Measurements of the liquid height along the walls and a middle control section are obtained from videos. The computational modeling is carried out using a moving interface technique, namely, the edge-tracked interface locator technique, to calculate the evolution of the water-air interface. The analysis involves a water-column aspect ratio of 2, with different obstacle geometries. The numerical predictions agree reasonably well with the experimental trends.

1.
Tezduyar
,
T. E.
, 1991, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
, pp.
1
44
. 0065-2156
2.
Tezduyar
,
T.
,
Aliabadi
,
S.
, and
Behr
,
M.
, 1998, “
Enhanced-Discretization Interface-Capturing Technique (EDICT) for Computation of Unsteady Flows With Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
155
, pp.
235
248
. 0045-7825
3.
Koshizuka
,
S.
, and
Oka
,
Y.
, 1996, “
Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid
,”
Nucl. Sci. Eng.
,
123
, pp.
421
434
. 0029-5639
4.
Tezduyar
,
T. E.
, 2001, “
Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,”
Arch. Comput. Methods Eng.
1134-3060,
8
, pp.
83
130
.
5.
Osher
,
S.
, and
Fedkiw
,
P.
, 2001, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
0021-9991,
169
, pp.
463
502
.
6.
Sethian
,
J. A.
, 2001, “
Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts
,”
J. Comput. Phys.
0021-9991,
169
, pp.
503
555
.
7.
Idelsohn
,
S.
,
Storti
,
M.
, and
Oñate
,
E.
, 2003, “
A Lagrangian Meshless Finite Element Method Applied to Fluid-Structure Interaction Problems
,”
Comput. Struct.
,
81
, pp.
655
671
. 0045-7949
8.
Tezduyar
,
T. E.
, 2003, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Numer. Methods Fluids
,
43
, pp.
555
575
. 0271-2091
9.
Tezduyar
,
T. E.
, 2004, “
Finite Element Methods for Fluid Dynamics With Moving Boundaries and Interfaces
,”
Encyclopedia of Computational Mechanics, Volume 3: Fluids
,
E.
Stein
,
R.
De Borst
, and
T. J. R.
Hughes
, eds.,
Wiley
,
New York
, Chap. 17.
10.
Cueto-Felgueroso
,
L.
,
Colominas
,
I.
,
Mosqueiras
,
G.
,
Navarrina
,
F.
, and
Casteleiro
,
M.
, 2004, “
On the Galerkin Formulation of the Smoothed Particle Hydrodynamics Method
,”
Int. J. Numer. Methods Eng.
,
60
, pp.
1475
1512
. 0029-5981
11.
Greaves
,
D.
, 2004, “
Simulation of Interface and Free Surface Flows in a Viscous Fluid Using Adapting Quadtree Grids
,”
Int. J. Numer. Methods Fluids
,
44
, pp.
1093
1117
. 0271-2091
12.
Kohno
,
H.
, and
Tanahashi
,
T.
, 2004, “
Numerical Analysis of Moving Interfaces Using a Level Set Method Coupled With Adaptive Mesh Refinement
,”
Int. J. Numer. Methods Fluids
,
45
, pp.
921
944
. 0271-2091
13.
Kulasegaram
,
S.
,
Bonet
,
J.
,
Lewis
,
R. W.
, and
Profit
,
M.
, 2004, “
A Variational Formulation Based Contact Algorithm for Rigid Boundaries in Two-Dimensional SPH Applications
,”
Comput. Mech.
,
33
, pp.
316
325
. 0178-7675
14.
Cruchaga
,
M. A.
,
Celentano
,
D. J.
, and
Tezduyar
,
T. E.
, 2005, “
Moving-Interface Computations With the Edge-Tracked Interface Locator Technique (ETILT)
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
, pp.
451
469
.
15.
Cruchaga
,
M. A.
,
Celentano
,
D. J.
, and
Tezduyar
,
T. E.
, 2007, “
Collapse of a Liquid Column: Numerical Simulation and Experimental Validation
,”
Comput. Mech.
,
39
, pp.
453
476
. 0178-7675
16.
Tezduyar
,
T. E.
, 2006, “
Interface-Tracking and Interface-Capturing Techniques for Finite Element Computation of Moving Boundaries and Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
2983
3000
. 0045-7825
17.
Martin
,
J.
, and
Moyce
,
W.
, 1952, “
An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane
,”
Philos. Trans. R. Soc. London, Ser. A
244
, pp.
312
324
. 0261-0523
You do not currently have access to this content.