This paper presents two stabilized formulations for the Schrödinger wave equation. First formulation is based on the Galerkin/least-squares (GLS) method, and it sets the stage for exploring variational multiscale ideas for developing the second stabilized formulation. These formulations provide improved accuracy on cruder meshes as compared with the standard Galerkin formulation. Based on the proposed formulations a family of tetrahedral and hexahedral elements is developed. Numerical convergence studies are presented to demonstrate the accuracy and convergence properties of the two methods for a model electronic potential for which analytical results are available.
1.
Chermette
, H.
, 1998, “Density Functional Theory: A Powerful Tool for Theoretical Studies in Coordination Chemistry
,” Coord. Chem. Rev.
, 178–180
, pp. 699
–721
. 0010-85452.
Martin
, R. M.
, 2004, Electronic Structure: Basic Theory and Practical Methods
, Cambridge University Press
, Cambridge
.3.
Liu
, B.
, Jiang
, H.
, Johnson
, H. T.
, and Huang
, Y.
, 2004, “The Influence of Mechanical Deformation on the Electrical Properties of Single Wall Carbon Nanotubes
,” J. Mech. Phys. Solids
0022-5096, 52
(1
), pp. 1
–26
.4.
Qian
, D.
, Wagner
, G. J.
, Liu
, W. K.
, Yu
, M.
, and Ruoff
, R. S.
, 2002, “Mechanics of Carbon Nanotubes
,” Appl. Mech. Rev.
0003-6900, 55
, pp. 495
–533
.5.
Liu
, W. K.
, Karpov
, E. G.
, Zhang
, S.
, and Park
, H. S.
, 2004, “An Introduction to Computational Nanomechanics and Materials
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 193
, pp. 1529
–1578
.6.
Pask
, J. E.
, Klein
, B. M.
, Sterne
, P. A.
, and Fong
, C. Y.
, 2001, “Finite-Element Methods in Electronic-Structure Theory
,” Comput. Phys. Commun.
0010-4655, 135
, pp. 1
–34
.7.
Pask
, J. E.
, 1999, “A Finite-Element Method for Large-Scale Ab Initio Electronic-Structure Calculations
,” Ph.D. thesis, University of California, Davis.8.
Pask
, J. E.
, Klein
, B. M.
, Fong
, C. Y.
, and Sterne
, P. A.
, 1999, “Real-Space Local Polynomial Basis for Solid-State Electronic-Structure Calculations: A Finite-Element Approach
,” Phys. Rev. B
0163-1829, 59
, pp. 12352
–12358
.9.
Jun
, S.
, and Liu
, W. K.
, 2007, “Moving Least Square Basis for Band-Structure Calculations of Natural and Artificial Crystals
,” Material Substructure in Complex Bodies: From Atomic Level to Continuum
, 1st ed., G.
Capriz
and P. M.
Mariano
, eds., Elsevier
, Amsterdam
, pp. 163
–205
.10.
Chelikowsky
, J. R.
, Troullier
, N.
, and Saad
, Y.
, 1994, “Finite-Difference-Pseudopotential Method: Electronic Structure Calculations Without a Basis
,” Phys. Rev. Lett.
0031-9007, 72
, pp. 1240
–1243
.11.
Chelikowsky
, J. R.
, Troullier
, N.
, Wu
, K.
, and Saad
, Y.
, 1994, “Higher-Order Finite-Difference Pseudopotential Method: An Application to Diatomic Molecules
,” Phys. Rev. B
0163-1829, 50
, pp. 11355
–11364
.12.
Hughes
, T. J. R.
, 1995, “Multiscale Phenomena: Green’s Functions, The Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 127
, pp. 387
–401
.13.
Masud
, A.
, and Franca
, L. P.
, 2008, “A Hierarchical Multiscale Framework for Problems With Multiscale Source Terms
,” Comput. Methods Appl. Mech. Eng.
, 197
(33–40
), pp. 2692
–2700
. 0045-782514.
Masud
, A.
, and Hughes
, T. J. R.
, 2002, “A Stabilized Mixed Finite Element Method for Darcy Flow
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 191
, pp. 4341
–4370
.15.
Masud
, A.
, and Khurram
, R.
, 2004, “A Stabilized/Multiscale Method for the Advection-Diffusion Equation
,” Comput. Methods Appl. Mech. Eng.
, 192
(13–14
), pp. 1
–24
. 0045-782516.
Masud
, A.
, and Bergman
, L. A.
, 2005, “Application of Multiscale Finite Element Methods to the Solution of the Fokker–Planck Equation
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 194
, pp. 1513
–1526
.17.
Masud
, A.
, and Khurram
, R.
, 2005, “A Multiscale Finite Element Method for the Incompressible Navier–Stokes Equations
,” Comput. Methods Appl. Mech. Eng.
, 194
(35
), pp. 16
–42
. 0045-782518.
Masud
, A.
, and Xia
, K.
, 2006, “A Variational Multiscale Method for Computational Inelasticity: Application to Superelasticity in Shape Memory Alloys
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 4512
–4531
. 0045-782519.
Tezduyar
, T. E.
, and Osawa
, Y.
, 2000, “Finite Element Stabilization Parameters Computed from Element Matrices and Vectors
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 190
, pp. 411
–430
.20.
Strang
, G.
, and Fix
, G. J.
, 1973, An Analysis of the Finite Element Method
, Prentice-Hall
, Englewood Cliffs, NJ
.21.
Pierret
, R. F.
, 2003, Advanced Semiconductor Fundamentals
, Vol. 6
, Prentice-Hall
, Englewood Cliffs, NJ
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.