This paper presents two stabilized formulations for the Schrödinger wave equation. First formulation is based on the Galerkin/least-squares (GLS) method, and it sets the stage for exploring variational multiscale ideas for developing the second stabilized formulation. These formulations provide improved accuracy on cruder meshes as compared with the standard Galerkin formulation. Based on the proposed formulations a family of tetrahedral and hexahedral elements is developed. Numerical convergence studies are presented to demonstrate the accuracy and convergence properties of the two methods for a model electronic potential for which analytical results are available.

1.
Chermette
,
H.
, 1998, “
Density Functional Theory: A Powerful Tool for Theoretical Studies in Coordination Chemistry
,”
Coord. Chem. Rev.
,
178–180
, pp.
699
721
. 0010-8545
2.
Martin
,
R. M.
, 2004,
Electronic Structure: Basic Theory and Practical Methods
,
Cambridge University Press
,
Cambridge
.
3.
Liu
,
B.
,
Jiang
,
H.
,
Johnson
,
H. T.
, and
Huang
,
Y.
, 2004, “
The Influence of Mechanical Deformation on the Electrical Properties of Single Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
(
1
), pp.
1
26
.
4.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M.
, and
Ruoff
,
R. S.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
495
533
.
5.
Liu
,
W. K.
,
Karpov
,
E. G.
,
Zhang
,
S.
, and
Park
,
H. S.
, 2004, “
An Introduction to Computational Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1529
1578
.
6.
Pask
,
J. E.
,
Klein
,
B. M.
,
Sterne
,
P. A.
, and
Fong
,
C. Y.
, 2001, “
Finite-Element Methods in Electronic-Structure Theory
,”
Comput. Phys. Commun.
0010-4655,
135
, pp.
1
34
.
7.
Pask
,
J. E.
, 1999, “
A Finite-Element Method for Large-Scale Ab Initio Electronic-Structure Calculations
,” Ph.D. thesis, University of California, Davis.
8.
Pask
,
J. E.
,
Klein
,
B. M.
,
Fong
,
C. Y.
, and
Sterne
,
P. A.
, 1999, “
Real-Space Local Polynomial Basis for Solid-State Electronic-Structure Calculations: A Finite-Element Approach
,”
Phys. Rev. B
0163-1829,
59
, pp.
12352
12358
.
9.
Jun
,
S.
, and
Liu
,
W. K.
, 2007, “
Moving Least Square Basis for Band-Structure Calculations of Natural and Artificial Crystals
,”
Material Substructure in Complex Bodies: From Atomic Level to Continuum
, 1st ed.,
G.
Capriz
and
P. M.
Mariano
, eds.,
Elsevier
,
Amsterdam
, pp.
163
205
.
10.
Chelikowsky
,
J. R.
,
Troullier
,
N.
, and
Saad
,
Y.
, 1994, “
Finite-Difference-Pseudopotential Method: Electronic Structure Calculations Without a Basis
,”
Phys. Rev. Lett.
0031-9007,
72
, pp.
1240
1243
.
11.
Chelikowsky
,
J. R.
,
Troullier
,
N.
,
Wu
,
K.
, and
Saad
,
Y.
, 1994, “
Higher-Order Finite-Difference Pseudopotential Method: An Application to Diatomic Molecules
,”
Phys. Rev. B
0163-1829,
50
, pp.
11355
11364
.
12.
Hughes
,
T. J. R.
, 1995, “
Multiscale Phenomena: Green’s Functions, The Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
127
, pp.
387
401
.
13.
Masud
,
A.
, and
Franca
,
L. P.
, 2008, “
A Hierarchical Multiscale Framework for Problems With Multiscale Source Terms
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
33–40
), pp.
2692
2700
. 0045-7825
14.
Masud
,
A.
, and
Hughes
,
T. J. R.
, 2002, “
A Stabilized Mixed Finite Element Method for Darcy Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4341
4370
.
15.
Masud
,
A.
, and
Khurram
,
R.
, 2004, “
A Stabilized/Multiscale Method for the Advection-Diffusion Equation
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
13–14
), pp.
1
24
. 0045-7825
16.
Masud
,
A.
, and
Bergman
,
L. A.
, 2005, “
Application of Multiscale Finite Element Methods to the Solution of the Fokker–Planck Equation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
1513
1526
.
17.
Masud
,
A.
, and
Khurram
,
R.
, 2005, “
A Multiscale Finite Element Method for the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
35
), pp.
16
42
. 0045-7825
18.
Masud
,
A.
, and
Xia
,
K.
, 2006, “
A Variational Multiscale Method for Computational Inelasticity: Application to Superelasticity in Shape Memory Alloys
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
4512
4531
. 0045-7825
19.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
, 2000, “
Finite Element Stabilization Parameters Computed from Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
411
430
.
20.
Strang
,
G.
, and
Fix
,
G. J.
, 1973,
An Analysis of the Finite Element Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Pierret
,
R. F.
, 2003,
Advanced Semiconductor Fundamentals
, Vol.
6
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.