The elastic displacement and stress fields due to a polygonal dislocation within an anisotropic homogeneous half-space are studied in this paper. Simple line integrals from 0 to π for the elastic fields are derived by applying the point-force Green’s functions in the corresponding half-space. Notably, the geometry of the polygonal dislocation is included entirely in the integrand easing integration for any arbitrarily shaped dislocation. We apply the proposed method to a hexagonal shaped dislocation loop with Burgers vector along [1¯ 1 0] lying on the crystallographic (1 1 1) slip plane within a half-space of a copper crystal. It is demonstrated numerically that the displacement jump condition on the dislocation loop surface and the traction-free condition on the surface of the half-space are both satisfied. On the free surface of the half-space, it is shown that the distributions of the hydrostatic stress (σ11 + σ22)/2 and pseudohydrostatic displacement (u1 + u2)/2 are both anti-symmetric, while the biaxial stress (σ11 − σ22)/2 and pseudobiaxial displacement (u1 − u2)/2 are both symmetric.

References

1.
Elbaum
,
C.
, 2009, “
Dislocations in Metal Crystals Grown from the Melt
,”
J. Appl. Phys.
31
, pp.
1413
1415
.
2.
Li
,
X.
,
Wei
,
Y.
,
Lu
,
L.
,
Lu
,
K.
, and
Gao
,
H.
, 2010, “
Dislocation Nucleation Governed Softening and Maximum Strength in Nano-Twinned Metals
,”
Nature
464
, pp.
877
880
.
3.
Ghosha
,
D.
,
Subhasha
,
G.
, and
Bourneb
,
G. R.
, 2009, “
Room-Temperature Dislocation Activity During Mechanical Deformation of Polycrystalline Ultra-High-Temperature Ceramics
,”
Scr. Mater.
61
, pp.
1075
1078
.
4.
Ovid’ko
,
I. A.
, and
Sheinerman
,
A. G.
, 2004, “
Misfit Dislocation Loops in Cylindrical Quantum Dots
,”
J. Phys.: Condens. Matter
16
, pp.
7225
7232
.
5.
Passow
,
T.
,
Maier
,
M.
,
Kunzer
,
M.
,
Leancu
,
C.
,
Liu
,
S.
,
Wiegert
,
J.
,
Schmidt
,
R.
,
Köhler
,
K.
, and
Wagner
,
J.
, 2009, “
Influence of Substrate Dislocation Density and Quantum Well Width on the Quantum Efficiency of Violet-Emitting GaInN/GaN Light-emitting Diodes
,”
Phys. Status Solidi C
6
, pp.
S833
S836
.
6.
Gosling
,
T. J.
, and
Willis
,
J. R.
, 1994, “
A Line-Integral Representation for the Stresses due to an Arbitrary Dislocation in an Isotropic Half-Space
,”
J. Mech. Phys. Solids
42
, pp.
1199
1221
.
7.
Head
,
A. K.
, 1953, “
Edge Dislocations in Inhomogeneous Media
,”
Proc. Phys. Soc. London, Sect. B
66
, pp.
793
801
.
8.
Willis
,
J. R.
,
Jain
,
S. C.
, and
Bullough
,
R.
, 1990, “
The Energy of an Array of Dislocations: Implications for Strain Relaxation in Semiconductor Heterostructures
,”
Philos. Mag. A
62
, pp.
115
129
.
9.
Hirth
,
J. P.
, and
Lothe
,
J.
, 1982,
Theory of Dislocations
, 2nd ed.,
Wiley
,
New York
.
10.
Gutkin
,
M. Y.
, and
Romanov
,
A. E.
, 1992, “
Misfit Dislocations in a Thin Two-Phase Hetero-Epitaxial Plate
,”
Phys. Status Solidi A
129
, pp.
117
126
.
11.
Wang
,
X.
, and
Sudak
,
L. J.
, 2006, “
Interaction of a Screw Dislocation with an Arbitrary Shaped Elastic Inhomogeneity
,”
J. Appl. Mech.
73
, pp.
206
211
.
12.
Gosling
,
T. J.
, and
Willis
,
J. R.
, 1993, “
The Energy of Arrays of Dislocations in an Anisotropic Half-Space
,”
Philos. Mag. A
69
, pp.
65
90
.
13.
Ting
,
T. C.
, and
Barnett
,
D. M.
, 1993, “
Image Force on Line Dislocations in Anisotropic Elastic Half-Spaces with a Fixed Boundary
,”
Int. J. Solids Struct.
30
, pp.
313
323
.
14.
Bacon
,
D. J.
, and
Crocker
,
A. G.
, 1965, “
The Elastic Energies of Symmetrical Dislocation Loops
,”
Philos. Mag.
12
, pp.
195
198
.
15.
Comninou
,
M.
, and
Dundurs
,
J.
, 1975, “
The Angular Dislocation in a Half Space
,”
J. Elasticity
5
, pp.
203
216
.
16.
Yen
,
W. J.
,
Hwu
,
C.
, and
Liang
,
Y. K.
, 1995, “
Dislocation Inside, Outside, or on the Interface of an Anisotropic Elliptical Inclusion
,”
J. Appl. Mech.
62
, pp.
306
311
.
17.
Shankar
,
M. R.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
, 2004, “
Interaction Between Dislocations in a Couple Stress Medium
,”
J. Appl. Mech.
71
, pp.
546
550
.
18.
Elkhodary
,
K.
,
Sun
,
L.
,
Irving
,
D. L.
,
Brenner
,
D. W.
,
Ravichandran
,
G.
, and
Zikry
,
M. A.
, 2009, “
Integrated Experimental, Atomistic, and Microstructurally Based Finite Element Investigation of the Dynamic Compressive Behavior of 2139 Aluminum
,”
J. Appl. Mech.
76
, p.
051306
.
19.
Volterra
,
V.
, 1907, “
Sur L’équilibre des Corps élastiques Miltiplement Connexes
,”
Annales Scientifiques de l’École Normale Supérieure
24
, pp.
401
517
.
20.
Han
,
X.
, and
Ghoniem
,
N. M.
, 2005, “
Stress Field and Interaction Forces of Dislocations in Anisotropic Multilayer Thin Films
,”
Philos. Mag
85
, pp.
1205
1225
.
21.
Ting
,
T. C. T.
,
Anisotropic Elasticity: Theory and Applications
(
Oxford University
,
New York
, 1996).
22.
Pan
,
E.
, and
Yuan
,
F. G.
, 2000, “
Three-Dimensional Green’s Functions in Anisotropic Bimaterials
,”
Int. J. Solids Struct.
37
, pp.
5329
5351
.
23.
Mura
,
T.
, 1987,
Micromechanics and Defects in Solids
, 2nd ed.,
Kluwer, Boston
.
24.
Willis
,
J. R.
, 1970, “
Stress Fields Produced by Dislocations in Anisotropic Media
,”
Philos. Mag.
21
, pp.
931
949
.
25.
Wang
,
C. Y.
, 1996, “
The Stress Field of a Dislocation Loop in an Anisotropic Solid
,”
J. Mech. Phys. Solids.
44
, pp.
293
305
.
26.
Chu
,
H. J.
,
Wang
,
J.
,
Zhou
,
C. Z.
, and
Beyerlein
,
I. J.
, 2011, “
Self-energy of Elliptical Dislocation Loops in Anisotropic Crystals and Its Application for Defect-free Core/Shell Nanowires
,”
Acta Mater.
59
, pp.
7114
7124
.
27.
Chu
,
H. J.
,
Pan
,
E.
,
Han
,
X.
,
Wang
,
J.
, and
Beyerlein
,
I. J.
, 2011, “
Elastic Fields of Dislocation Loops in Three-Dimensional Anisotropic Bimaterials
,”
J. Mech. Phys. Solids
, available at http://www.sciencedirect.com/science/article/pii/S0022509611002407http://www.sciencedirect.com/science/article/pii/S0022509611002407, last accessed 23 December 2011.
You do not currently have access to this content.