Abstract

Supratransmission refers to a phenomenon that nonlinear medium allows large-amplitude waves to transmit energy through the band gap, which has been extensively studied in many nonlinear models. Recently, controlling supratransmission using bistable nonlinearities has gained growing attentions. Nevertheless, the general principles of controlling supratransmission using multistable nonlinearities have remained elusive. As a first step to address such challenge, this work presents programmable supratransmission using tristable nonlinearities. Through numerical simulations, we demonstrate that a mechanical chain consisting of tristable oscillators can achieve rich programmable features of supratransmission by simply tuning the tristable potential energy curve, providing new insights into how supratransmission can be controlled. The current work deepens the understanding of programmable supratransmission using multistable nonlinearities.

References

1.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.
2.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
3.
Anghel-Vasilescu
,
P.
,
Dorignac
,
J.
,
Geniet
,
F.
,
Leon
,
J.
, and
Taki
,
M.
,
2010
, “
Nonlinear Supratransmission in Multicomponent Systems
,”
Phys. Rev. Lett.
,
105
(
7
), p.
074101
.
4.
Geniet
,
F.
, and
Leon
,
J.
,
2002
, “
Energy Transmission in the Forbidden Band Gap of a Nonlinear Chain
,”
Phys. Rev. Lett.
,
89
(
13
), p.
134102
.
5.
Khomeriki
,
R.
,
2004
, “
Nonlinear Band Gap Transmission in Optical Waveguide Arrays
,”
Phys. Rev. Lett.
,
92
(
6
), p.
063905
.
6.
Leon
,
J.
,
2003
, “
Nonlinear Supratransmission as a Fundamental Instability
,”
Phys. Lett. A
,
319
(
1–2
), pp.
130
136
.
7.
Alima
,
R.
,
Morfu
,
S.
,
Marquié
,
P.
,
Bodo
,
B.
, and
Essimbi
,
B. Z.
,
2017
, “
Influence of a Nonlinear Coupling on the Supratransmission Effect in Modified Sine-Gordon and Klein–Gordon Lattices
,”
Chaos, Solit. Fract.
,
100
, pp.
91
99
.
8.
Geniet
,
F.
, and
Leon
,
J.
,
2003
, “
Nonlinear Supratransmission
,”
J. Phys.: Condens. Matter
,
15
(
17
), pp.
2933
2949
.
9.
Khomeriki
,
R.
,
Lepri
,
S.
, and
Ruffo
,
S.
,
2004
, “
Nonlinear Supratransmission and Bistability in the Fermi-Pasta-Ulam Model
,”
Phys. Rev. E
,
70
(
6
), p.
066626
.
10.
Macías-Díaz
,
J. E.
, and
Puri
,
A.
,
2008
, “
On the Transmission of Binary Bits in Discrete Josephson-Junction Arrays
,”
Phys. Lett. A
,
372
(
30
), pp.
5004
5010
.
11.
Talebi Bidhendi
,
M. R.
,
2022
, “
Band Gap Transmission in a Periodic Network of Coupled Buckled Beams
,”
Int. J. Solids Struct.
,
252
, p.
111766
.
12.
Macías-Díaz
,
J. E.
, and
Puri
,
A.
,
2007
, “
An Application of Nonlinear Supratransmission to the Propagation of Binary Signals in Weakly Damped, Mechanical Systems of Coupled Oscillators
,”
Phys. Lett. A
,
366
(
4–5
), pp.
447
450
.
13.
Togueu Motcheyo
,
A. B.
,
Tchawoua
,
C.
,
Siewe Siewe
,
M.
, and
Tchinang Tchameu
,
J. D.
,
2013
, “
Supratransmission Phenomenon in a Discrete Electrical Lattice With Nonlinear Dispersion
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
4
), pp.
946
952
.
14.
Togueu Motcheyo
,
A. B.
,
Tchawoua
,
C.
, and
Tchinang Tchameu
,
J. D.
,
2013
, “
Supratransmission Induced by Waves Collisions in a Discrete Electrical Lattice
,”
Phys. Rev. E
,
88
(
4
), p.
040901
.
15.
Savel’ev
,
S.
,
Yampol’skii
,
V. A.
,
Rakhmanov
,
A. L.
, and
Nori
,
F.
,
2007
, “
Layered superconductors as nonlinear waveguides for terahertz waves
,”
Phys. Rev. B
,
75
(
18
), p.
184503
.
16.
Khomeriki
,
R.
,
Léon
,
J.
, and
Chevriaux
,
D.
,
2006
, “
Quantum Hall Bilayer Digital Amplifier
,”
Eur. Phys. J. B
,
49
(
2
), pp.
213
218
.
17.
Chevriaux
,
D.
,
Khomeriki
,
R.
, and
Leon
,
J.
,
2006
, “
Theory of a Josephson Junction Parallel Array Detector Sensitive to Very Weak Signals
,”
Phys. Rev. B
,
73
(
21
), p.
214516
.
18.
Bodo
,
B.
,
Morfu
,
S.
,
Marquié
,
P.
, and
Rossé
,
M.
,
2010
, “
Klein-Gordon Electronic Network Exhibiting Supratransmission Effect
,”
Electron. Lett.
,
46
(
2
), p.
123
.
19.
Macias-Diaz
,
J. E.
,
2008
, “
Numerical Study of the Transmission of Energy in Discrete Arrays of Sine-Gordon Equations in Two Space Dimensions
,”
Phys. Rev. E
,
77
(
1
), p.
016602
.
20.
Zhang
,
Q.
,
Fang
,
H.
, and
Xu
,
J.
,
2020
, “
Programmable Stopbands and Supratransmission Effects in a Stacked Miura-Origami Metastructure
,”
Phys. Rev. E
,
101
(
4
), p.
042206
.
21.
Frazier
,
M. J.
, and
Kochmann
,
D. M.
,
2017
, “
Band Gap Transmission in Periodic Bistable Mechanical Systems
,”
J. Sound Vib.
,
388
, pp.
315
326
.
22.
Wang
,
Y.
,
Zhang
,
X.
, and
Zhu
,
S.
,
2023
, “
Highly Intensive and Controllable Supratransmission in a Kresling-Origami Metastructure
,”
Extreme Mech. Lett.
,
59
, p.
101964
.
23.
Kim
,
S.-W.
,
Koh
,
J.-S.
,
Lee
,
J.-G.
,
Ryu
,
J.
,
Cho
,
M.
, and
Cho
,
K.-J.
,
2014
, “
Flytrap-Inspired Robot Using Structurally Integrated Actuation Based on Bistability and a Developable Surface
,”
Bioinspir. Biomim.
,
9
(
3
), p.
036004
.
24.
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Modeling and Experimental Validation of Actuating a Bistable Buckled Beam via Moment Input
,”
ASME J. Appl. Mech.
,
82
(
5
).
25.
Yan
,
W.
,
Yu
,
Y.
, and
Mehta
,
A.
,
2019
, “
Analytical Modeling for Rapid Design of Bistable Buckled Beams
,”
Theoret. Appl. Mech. Lett.
,
9
(
4
), pp.
264
272
.
26.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2017
, “
Dynamics of a Bistable Miura-Origami Structure
,”
Phys. Rev. E
,
95
(
5
), p.
052211
.
27.
Kidambi
,
N.
, and
Wang
,
K. W.
,
2020
, “
Dynamics of Kresling Origami Deployment
,”
Phys. Rev. E
,
101
(
6
), p.
063003
.
28.
Yang
,
X.
, and
Keten
,
S.
,
2021
, “
Multi-Stability Property of Magneto-Kresling Truss Structures
,”
ASME J. Appl. Mech.
,
88
(
9
), p.
091009
.
29.
Yang
,
Y.
,
Dias
,
M. A.
, and
Holmes
,
D. P.
,
2018
, “
Multistable Kirigami for Tunable Architected Materials
,”
Phys. Rev. Mater.
,
2
(
11
), p.
110601(R)
.
30.
Wang
,
L. C.
,
Song
,
W. L.
,
Zhang
,
Y. J.
,
Qu
,
M. J.
,
Zhao
,
Z.
,
Chen
,
M.
,
Yang
,
Y.
,
Chen
,
H.
, and
Fang
,
D.
,
2020
, “
Active Reconfigurable Tristable Square-Twist Origami
,”
Adv. Funct. Mater.
,
30
(
13
), p.
1909087
.
31.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
e2110384
.
32.
Li
,
S.
,
Fang
,
H.
, and
Wang
,
K. W.
,
2016
, “
Recoverable and Programmable Collapse From Folding Pressurized Origami Cellular Solids
,”
Phys. Rev. Lett.
,
117
(
11
), p.
114301
.
33.
Nadkarni
,
N.
,
Daraio
,
C.
, and
Kochmann
,
D. M.
,
2014
, “
Dynamics of Periodic Mechanical Structures Containing Bistable Elastic Elements: From Elastic to Solitary Wave Propagation
,”
Phys. Rev. E
,
90
(
2
), p.
023204
.
34.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extreme Mech. Lett.
,
9
, pp.
291
296
.
35.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson’s Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), p.
185502
.
36.
Liu
,
M.
,
Zhu
,
Y.
,
Wang
,
C.
,
Chen
,
Y.
,
Wu
,
Y.
,
Zhang
,
H.
,
Du
,
Y.
, and
Wang
,
W.
,
2020
, “
A Novel Low-g MEMS Bistable Inertial Switch With Self-Locking and Reverse-Unlocking Functions
,”
J. Microelectromech. Syst.
,
29
(
6
), pp.
1493
1503
.
37.
Cao
,
Y.
,
Derakhshani
,
M.
,
Fang
,
Y.
,
Huang
,
G.
, and
Cao
,
C.
,
2021
, “
Bistable Structures for Advanced Functional Systems
,”
Adv. Funct. Mater.
,
31
(
45
), p.
2106231
. DOI: 10.1002/adfm.202106231
38.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems
,”
Smart Mater. Struct.
,
22
, p.
023001
.
39.
Panyam
,
M.
, and
Daqaq
,
M. F.
,
2017
, “
Characterizing the Effective Bandwidth of Tri-Stable Energy Harvesters
,”
J. Sound Vib.
,
386
, pp.
336
358
.
40.
Arrieta
,
A. F.
,
Kuder
,
I. K.
,
Rist
,
M.
,
Waeber
,
T.
, and
Ermanni
,
P.
,
2014
, “
Passive Load Alleviation Aerofoil Concept With Variable Stiffness Multi-Stable Composites
,”
Compos. Struct.
,
116
, pp.
235
242
.
41.
Davis
,
L. P.
,
Mattioni
,
F.
,
Henderson
,
B. K.
,
Weaver
,
P. M.
,
Potter
,
K. D.
,
McMickell
,
M. B.
, and
Friswell
,
M. I.
,
2008
, “
The Application of Thermally Induced Multistable Composites to Morphing Aircraft Structures
,”
Industrial and Commercial Applications of Smart Structures Technologies
,
San Diego, CA
,
Mar. 10–11
.
42.
Chi
,
Y.
,
Tang
,
Y.
,
Liu
,
H.
, and
Yin
,
J.
,
2020
, “
Leveraging Monostable and Bistable Pre-Curved Bilayer Actuators for High-Performance Multitask Soft Robots
,”
Adv. Mater. Technol.
,
5
(
9
), p.
2000370
.
43.
Patel
,
D. K.
,
Huang
,
X.
,
Luo
,
Y.
,
Mungekar
,
M.
,
Jawed
,
M. K.
,
Yao
,
L.
, and
Majidi
,
C.
,
2022
, “
Highly Dynamic Bistable Soft Actuator for Reconfigurable Multimodal Soft Robots
,”
Adv. Mater. Technol.
,
8
(
2
), p.
2370006
. DOI: 10.1002/admt.202370006
44.
Xu
,
Z.-L.
,
Wang
,
Y.-Q.
,
Zhu
,
R.
, and
Chuang
,
K.-C.
,
2021
, “
Torsional Bandgap Switching in Metamaterials with Compression–Torsion Interacted Origami Resonators
,”
J. Appl. Phys.
,
130
(
4
), p.
045105
.
45.
Hiromi Yasuda
,
L. M. K.
, and
Raney
,
J. R.
,
2019
, “
Wave Dynamics in Reconfigurable Tristable Mechanical Metamaterials
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
46.
Wu
,
Z.
, and
Wang
,
K. W.
,
2019
, “
On the Wave Propagation Analysis and Supratransmission Prediction of a Metastable Modular Metastructure for Non-Reciprocal Energy Transmission
,”
J. Sound Vib.
,
458
(
4
), pp.
389
406
.
47.
Wu
,
Z.
,
Zheng
,
Y.
, and
Wang
,
K. W.
,
2018
, “
Metastable Modular Metastructures for On-Demand Reconfiguration of Band Structures and Nonreciprocal Wave Propagation
,”
Phys. Rev. E
,
97
(
2
), p.
022209
.
48.
Zheng
,
Y.
,
Wu
,
Z.
,
Zhang
,
X.
, and
Wang
,
K. W.
,
2019
, “
A Piezo-Metastructure with Bistable Circuit Shunts for Adaptive Nonreciprocal Wave Transmission
,”
Smart Mater. Struct.
,
28
, p.
045005
. DOI 10.1088/1361-665X/ab083c
49.
Zhou
,
W. J.
,
Li
,
X. P.
,
Wang
,
Y. S.
,
Chen
,
W. Q.
, and
Huang
,
G. L.
,
2018
, “
Spectro-Spatial Analysis of Wave Packet Propagation in Nonlinear Acoustic Metamaterials
,”
J. Sound Vib.
,
413
, pp.
250
269
.
50.
Bouzat
,
S.
, and
Wio
,
H. S.
,
1999
, “
Stochastic Resonance in Extended Bistable Systems: The Role of Potential Symmetry
,”
Phys. Rev. E
,
59
(
5
), p.
5142
.
51.
Dykman
,
M. I.
,
Luchinsky
,
D. G.
,
McClintock
,
P. V. E.
,
Stein
,
N. D.
, and
Stocks
,
N. G.
,
1992
, “
Stochastic Resonance for Periodically Modulated Noise Intensity
,”
Phys. Rev. A
,
46
(
4
), pp.
R1713
R1716
.
52.
Fang
,
H.
,
Wang
,
K. W.
, and
Li
,
S.
,
2017
, “
Asymmetric Energy Barrier and Mechanical Diode Effect From Folding Multi-Stable Stacked-Origami
,”
Extreme Mech. Lett.
,
17
, pp.
7
15
.
53.
Inchiosa
,
M. E.
,
Bulsara
,
A. R.
, and
Gammaitoni
,
L.
,
1997
, “
Higher-Order Resonant Behavior in Asymmetric Nonlinear Stochastic Systems
,”
Phys. Rev. E
,
55
(
4
), p.
4049
.
54.
Kidambi
,
N.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
, “
Energy Capture and Storage in Asymmetrically Multistable Modular Structures Inspired by Skeletal Muscle
,”
Smart Mater. Struct.
,
26
(
8
), p.
085011
.
55.
Li
,
J.-H.
,
2002
, “
Effect of Asymmetry on Stochastic Resonance and Stochastic Resonance Induced by Multiplicative Noise and by Mean-Field Coupling
,”
Phys. Rev. E
,
66
(
3
), p.
031104
.
56.
Long
,
F.
,
Du
,
L.-C.
, and
Mei
,
D.-C.
,
2009
, “
Asymmetric Effects on the Associated Relaxation Time and the Correlation Function of a Bistable System With Correlated Noises
,”
Phys. Scr.
,
79
(
4
), p.
045007
.
57.
Wang
,
C.-J.
,
Dai
,
Z.-C.
, and
Mei
,
D.-C.
,
2011
, “
Asymmetric Effects on Escape Rates of Bistable System
,”
Commun. Theoret. Phys.
,
56
(
6
), pp.
1041
1044
.
58.
Yang
,
X.-N.
, and
Yang
,
Y.-F.
,
2015
, “
Vibrational Resonance in an Asymmetric Bistable System With Time-Delay Feedback
,”
Acta Phys. Sin
,
64
(
7
), p.
070507
.
59.
Zhou
,
S.
, and
Zuo
,
L.
,
2018
, “
Nonlinear Dynamic Analysis of Asymmetric Tristable Energy Harvesters for Enhanced Energy Harvesting
,”
Commun. Nonlinear Sci. Numer. Simul.
,
61
, pp.
271
284
.
You do not currently have access to this content.