Abstract

The existence of Stoneley waves propagating in two micropolar isotropic elastic half-spaces with sliding contact was considered by Tajuddin (1995, Existence of Stoneley Waves at an Unbonded Interface Between Two Micropolar Elastic Half-Spaces, ASME J. Appl. Mech., 62, 255–257). However, the existence of Stoneley waves was proved only for the case when two half-spaces are incompressible or Poisson solids and their material properties are close to each other. In this paper, the authors investigate the existence of micropolar elastic Stoneley waves with sliding contact for the general case when two micropolar isotropic elastic half-spaces are arbitrary. By using the complex function method, the authors have established the necessary and sufficient conditions for a micropolar elastic Stoneley wave to exist and have proved that if a micropolar elastic Stoneley wave exists, it is unique. When the micropolarity is absent, the established existence result recovers the necessary and sufficient condition for the existence of an elastic Stoneley wave with a sliding contact that was found by Barnett and co-workers (1988, Slip Waves Along the Interface Between Two Anisotropicelastic Half-Spaces in Sliding Contact, Proc. R. Soc. London, Ser. A, 415, 389–419) by using the interface impedance matrix method. Explicit formulas for the slowness (the inverse of velocity) of micropolar elastic Stoneley waves have also been derived which will be of great interest in both theoretical and practical aspects.

References

1.
Stoneley
,
R.
,
1924
, “
Elastic Waves at the Surface of Separation of Two Solids
,”
Proc. R. Soc. London
,
106
(
738
), pp.
416
428
.
2.
Stroh
,
A. N.
,
1962
, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
(
1–4
), pp.
77
103
.
3.
Lim
,
T. C.
, and
Musgrave
,
M. J. P.
,
1970
, “
Stoneley Waves in Anisotropic Media
,”
Nature
,
225
(
5230
), p.
372
.
4.
William
,
W. J.
,
1970
, “
The Propagation of Stoneley and Rayleigh Waves in Anisotropic Elastic Media
,”
Bull. Seismol. Soc. Am.
,
60
(
4
), pp.
1105
1122
.
5.
Chadwick
,
P.
, and
Currier
,
P. K.
,
1974
, “
Stoneley Waves at an Interface Between Elastic Crystals
,”
Q. J. Mech. Appl. Math.
,
XXVII
(
4
), pp.
497
503
.
6.
Barnett
,
D. M.
,
Lothe
,
J.
,
Gavazza
,
S. D.
, and
Musgrave
,
M. J. P.
,
1985
, “
Consideration of the Existence of Stoneley Waves in Bonded Anisotropic Elastic Half-Spaces
,”
Proc. R. Soc. London, Ser. A
,
402
(
1822
), pp.
153
166
.
7.
Barnett
,
D. M.
,
Gavazza
,
S. D.
, and
Lothe
,
J.
,
1988
, “
Slip Waves Along the Interface Between Two Anisotropicelastic Half-Spaces in Sliding Contact
,”
Proc. R. Soc. London, Ser. A
,
415
(
1849
), pp.
389
419
.
8.
Abbudi
,
M.
, and
Barnett
,
D. M.
,
1990
, “
On the Existence of Interfacial (Stone-ley) Waves in Bonded Piezoelectric Half-Spaces
,”
Proc. R. Soc. London, Ser. A
,
429
(
1877
), pp.
587
611
.
9.
Darinskii
,
A. N.
, and
Weihnacht
,
M.
,
2005
, “
Interface Acoustic Waves in Piezo- Electric Bi-Crystalline Structures of Specific Types
,”
Proc. R. Soc. London, Ser. A
,
461
(
2056
), pp.
895
911
.
10.
Fan
,
H.
,
Yang
,
J.
, and
Xu
,
L.
,
2006
, “
Piezoelectric Waves Near an Imperfectly Bonded Interface Between Two Half-Spaces
,”
Appl. Phys. Lett.
,
88
(
20
), p.
203509
.
11.
Ghosh
,
N. C.
,
Nath
,
S.
, and
Debnath
,
L.
,
2001
, “
Propagation of Waves in Micropolar Solid-Solid Semi-Spaces in the Presence of a Compressional Wave Source in the Upper Solid Substratum
,”
Math. Comput. Modell.
,
34
(
5–6
), pp.
557
563
.
12.
Singh
,
S. S.
, and
Tochhawng
,
L.
,
2019
, “
Stoneley Waves in Thermoelastic Materials With Voids
,”
J. Vib. Control
,
23
(
14
), pp.
2053
2062
.
13.
Tomar
,
S. K.
, and
Singh
,
D.
,
2006
, “
Propagation of Stoneley Waves at an Interface Between Two Microstretch Elastic Half-Spaces
,”
J. Vib. Control
,
12
(
9
), pp.
915
1009
.
14.
Mahmoodian
,
M.
,
Ghadi
,
M. E.
, and
Nikkhoo
,
A.
,
2020
, “
Rayleigh, Love and Stoneley Waves in a Transversely Isotropic Saturated Poroelastic Media by Means of Potential Method
,”
Soil Dyn. Earthquake Eng.
,
134
, p.
106139
.
15.
Gu
,
Q.
,
Lui
,
Y.
, and
Liang
,
T.
,
2023
, “
Stoneley Wave at the Interface of Elastic-Nematic Elastomer Half-Spaces
,”
Physica B
,
652
, p.
414629
.
16.
Chadwick
,
P.
, and
Jarvis
,
D. A.
,
1979
, “
Interfacial Waves in a Pre-Strain Neo-Hookean Body I. Biaxial State of Strain
,”
Q. J. Mech. Appl. Math
,
32
(
4
), pp.
387
399
.
17.
Chadwick
,
P.
, and
Jarvis
,
D. A.
,
1979
, “
Interfacial Waves in a Pre-Strain Neo-Hookean Body II. Triaxial State of Strain
,”
Q. J. Mech. Appl. Math
,
32
(
4
), pp.
401
418
.
18.
Dasgupta
,
A.
,
1981
, “
Effect of High Initial Stress on the Propagation of Stoneley Waves at the Interface of Two Isotropic Elastic Incompressible Media
,”
Indian J. Pure Appl. Math
,
12
, pp.
919
926
.
19.
Dunwoody
,
J.
,
1989
, “Elastic Interfacial Standing Waves,”
Elastic Waves Propagation
,
M. F.
McCarthy
, and
M. A.
Hayes
, eds.,
Elsevier
,
North-Holland, Amsterdam
, pp.
107
112
.
20.
Dowaikh
,
M. A.
, and
Ogden
,
R. W.
,
1991
, “
Interfacial Waves and Deformations in Pre-Stressed Elastic Media
,”
Proc. R. Soc. London, Ser. A
,
433
(
1888
), pp.
313
328
.
21.
Vinh
,
P. C.
, and
Giang
,
P. T. H.
,
2012
, “
Uniqueness of Stoneley Waves in Pre-Stressed Incompressible Elastic Media
,”
Int. J. Non-Linear Mech.
,
47
(
2
), pp.
128
134
.
22.
Murty
,
G. S.
,
1975
, “
A Theoretical Model for the Attenuation and Dispersion of Stoneley Waves at the Loosely Bonded Interface of Elastic Half Spaces
,”
Phys. Earth Planet. Inter.
,
11
(
1
), pp.
65
79
.
23.
Murty
,
G. S.
,
1975
, “
Wave Propagation at Unbonded Interface Between Two Elastic Half-Spaces
,”
J. Acoust. Soc. Am.
,
58
(
5
), pp.
1094
1095
.
24.
Tajuddin
,
M.
,
1995
, “
Existence of Stoneley Waves at an Unbonded Interface Between Two Micropolar Elastic Half-Spaces
,”
ASME J. Appl. Mech.
,
62
(
1
), pp.
255
225
.
25.
Vinh
,
P. C.
, and
Giang
,
P. T. H.
,
2011
, “
On Formulas for the Velocity of Stoneley Waves Propagating Along the Loosely Bonded Interface of Two Elastic Half-Spaces
,”
Wave Motion
,
48
(
7
), pp.
647
657
.
26.
Giang
,
P. T. H.
,
Vinh
,
P. C.
, and
Anh
,
V. T. N.
,
2020
, “
Formulas for the Slowness of Stoneley Waves with Sliding Contact
,”
Arch. Mech.
,
72
(
5
), pp.
465
481
.
27.
Anh
,
V. T. N.
,
Vinh
,
P. C.
,
Thang
,
L. T.
, and
Tuan
,
T. T.
,
2020
, “
Stoneley Waves With Spring Contact and Evaluation of the Quality of Imperfect Bonds
,”
Z. Angew. Math. Phys.
,
71
(
36
), p.
36
.
28.
Anh
,
V. T. N.
, and
Vinh
,
P. C.
,
2023
, “
Expressions of Nonlocal Quantities and application to Stoneley Waves in Weakly Nonlocal Orthotropic Elastic Half-Spaces
,”
Math. Mech. Solids
,
28
(
11
), pp.
2420
2435
.
29.
Bian
,
C.
,
Huang
,
B.
,
Xie
,
L.
,
Yi
,
L.
,
Yuan
,
L.
, and
Wang
,
J.
,
2021
, “
Propagation of Axisymmetric Stoneley Waves in Alstic Solids
,”
Acta Phys. Pol. A
,
139
(
2
), pp.
124
131
.
30.
Yu
,
B.
,
Jing
,
H.
,
Wang
,
J.
,
Bu
,
Z.
, and
Da Fontoura
,
S. A. B.
,
2024
, “
An Analysis of the Axisymmetric Generalized Stoneley Wave in Structures With Layered Elastic Solids
,”
Acta Phys. Pol. A
,
145
(
5
), pp.
247
255
.
31.
Nobili
,
A.
,
Volpini
,
V.
, and
Signorini
,
C.
,
2021
, “
Antiplane Stoneley Waves Propagating at the Interface Between Two Couple Stress Elastic Materials
,”
Acta Mech.
,
232
(
3
), pp.
1207
1225
.
32.
Sezawa
,
K.
, and
Kanai
,
K.
,
1939
, “
The Range of Possible Existence of Stoneley-Waves, and Some Related Problems
,”
Bull. Earthq. Res. Inst. Tokyo Univ.
,
17
, pp.
1
8
.
33.
Scholte
,
J. G.
,
1942
, “
On the Stoneley-Wave Equation
,”
Proc. Kon. Acad. Sci. Amt.
,
45
, pp.
159
164
.
34.
Scholte
,
J. G.
,
1947
, “
The Range of Existence of Rayleigh and Stoneley Waves
,”
Geophys. Suppl., Mon. Not. R. Astr. Soc.
,
5
(
5
), pp.
120
126
.
35.
Chadwick
,
P.
, and
Borejko
,
P.
,
1994
, “
Existence and Uniqueness of Stoneley Waves
,”
Geophys. J. Int.
,
118
(
2
), pp.
279
284
.
36.
Muskhelishvili
,
N. I.
,
1953
,
Singular Intergral Equations
,
Noordhoff
,
Groningen
.
37.
Henrici
,
P.
,
1986
,
Applied and Computational Complex Analysis
, Vol.
III
,
Wiley
,
New York
.
38.
Vinh
,
P. C.
,
Malischewsky
,
P. G.
, and
Giang
,
P. T. H.
,
2012
, “
Formulas for the Speed and Slowness of Stoneley Waves in Bonded Isotropic Elastic Half-Spaces With the Same Bulk Wave Velocities
,”
Int. J. Eng. Sci.
,
60
, pp.
53
58
.
39.
Eringen
,
A. C.
,
1966
, “
Linear Theory of Micropolar Elasticity
,”
Math. Mech. J.
,
15
, pp.
909
924
.
40.
Dyszlewicz
,
J.
,
2012
,
Micropolar Theory of Elasticity
, Vol.
15
,
Springer Science & Business Media
,
Springer Berlin, Heidelberg
.
41.
Khurana
,
A.
, and
Tomar
,
S. K.
,
2017
, “
Rayleigh-Type Waves in Nonlocal Micropolar Solid Half-Space
,”
Ultrasonics
,
73
, pp.
162
168
.
42.
Eringen
,
A. C.
,
1968
, “Theory of Micropolar Elasticity,”
Fracture
, Vol.
II
,
H.
Liebowitz
, ed.,
Academic Press
,
New York
, pp.
621729
.
43.
Muskhelishvili
,
N. I.
,
1963
,
Some Basic Problems of Mathematical Theory of Elasticity
,
Noordhoff
,
Netherlands
.
44.
Nkemzi
,
D.
,
1997
, “
A New Formula for the Velocity of Rayleigh Waves
,”
Wave Motion
,
26
(
2
), pp.
199
205
.
You do not currently have access to this content.