Graphical Abstract Figure

Bistable foldable panel, where $n$ is the number of unit cells in a single unit cell composite plane, s is the number of unit cell composite planes that make up the panel, t is the distance between adjacent concave surfaces, b is the distance between adjacent convex surfaces, l1 is the length along the X1-direction, l2 is the length along the X2-direction, and the holes in the perspective model are vent holes used for gas actuation during deployment and folding.

Graphical Abstract Figure

Bistable foldable panel, where $n$ is the number of unit cells in a single unit cell composite plane, s is the number of unit cell composite planes that make up the panel, t is the distance between adjacent concave surfaces, b is the distance between adjacent convex surfaces, l1 is the length along the X1-direction, l2 is the length along the X2-direction, and the holes in the perspective model are vent holes used for gas actuation during deployment and folding.

Close modal

Abstract

Deployable structures are extensively used in engineering. A bistable panel structure, inspired by multistable origami, is proposed, capable of deployment and folding powered by air pressure. Prototypes were manufactured using planar laser etching technology based on geometric design. Mechanical behavior under out-of-plane compression, in-plane compression, and out-of-plane bending loads was analyzed through experiments. The foldable panel showed superior mechanical performance under out-of-plane compression, highlighting its potential as an ideal energy-absorbing material. In-plane compression and out-of-plane bending along the folding direction exhibited lower strength due to foldability, with failure modes involving rigidity loss from folding. The structure demonstrated good energy absorption characteristics during in-plane compression. As the angle of the unit increased during out-of-plane bending, mechanical performance improved, but the failure mode shifted to fracture. In in-plane compression and out-of-plane bending perpendicular to the folding direction, mechanical performance was enhanced, but the structure failed due to strength loss from fracture.

References

1.
Zhang
,
X.
,
Nie
,
R.
,
Chen
,
Y.
, and
He
,
B.
,
2021
, “
Deployable Structures: Structural Design and Static/Dynamic Analysis
,”
J. Elast.
,
146
(
2
), pp.
199
235
.
2.
Gruber
,
P.
,
Häuplik
,
S.
,
Imhof
,
B.
,
Özdemir
,
K.
,
Waclavicek
,
R.
, and
Perino
,
M. A.
,
2007
, “
Deployable Structures for a Human Lunar Base
,”
Acta Astronaut.
,
61
(
1–6
), pp.
484
495
.
3.
Lee
,
N. N.
,
Burdick
,
J. W.
,
Backes
,
P.
,
Pellegrino
,
S.
,
Hogstrom
,
K.
,
Fuller
,
C.
,
Kennedy
,
B.
,
Kim
,
J.
,
Mukherjee
,
R.
,
Seubert
,
C.
, and
Wu
,
Y. H.
,
2016
, “
Architecture for In-Space Robotic Assembly of a Modular Space Telescope
,”
J. Astron. Telescopes, Instrum. Syst.
,
2
(
4
), p.
041207
.
4.
Guo
,
R.
,
Jin
,
X.
,
Jia
,
Q.
,
Ma
,
X.
,
An
,
N.
, and
Zhou
,
J.
,
2023
, “
Folding, Stowage, and Deployment of Composite Thin-Walled Lenticular Tubes
,”
Acta Astronaut.
,
213
, pp.
567
577
.
5.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
6.
Zhang
,
C.
,
Zhu
,
P.
,
Lin
,
Y.
,
Tang
,
W.
,
Jiao
,
Z.
,
Yang
,
H.
, and
Zou
,
J.
,
2021
, “
Fluid-Driven Artificial Muscles: Bio-Design, Manufacturing, Sensing, Control, and Applications
,”
Bio-Des. Manuf.
,
4
(
1
), pp.
123
145
.
7.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich Tini Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A.
,
419
(
1–2
), pp.
131
137
.
8.
Bobbert
,
F.
,
Janbaz
,
S.
, and
Zadpoor
,
A.
,
2018
, “
Towards Deployable Meta-Implants
,”
J. Mater. Chem. B
,
6
(
21
), pp.
3449
3455
.
9.
Fan
,
D.
,
Yuan
,
X.
,
Wu
,
W.
,
Zhu
,
R.
,
Yang
,
X.
,
Liao
,
Y.
,
Ma
,
Y.
,
Xiao
,
C.
,
Chen
,
C.
,
Liu
,
C.
, and
Wang
,
H.
,
2022
, “
Self-Shrinking Soft Demoulding for Complex High-Aspect-Ratio Microchannels
,”
Nat. Commun.
,
13
(
1
), pp.
1
11
.
10.
Yang
,
X.
,
Zhou
,
Y.
,
Zhao
,
H.
,
Huang
,
W.
,
Wang
,
Y.
,
Hsia
,
K. J.
, and
Liu
,
M.
,
2023
, “
Morphing Matter: From Mechanical Principles to Robotic Applications
,”
Soft Sci.
,
3
(
4
), p.
38
.
11.
Jiang
,
H.
,
Wang
,
Z.
,
Jin
,
Y.
,
Chen
,
X.
,
Li
,
P.
,
Gan
,
Y.
,
Lin
,
S.
, and
Chen
,
X.
,
2021
, “
Hierarchical Control of Soft Manipulators Towards Unstructured Interactions
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
411
434
.
12.
Xie
,
Z.
,
Yuan
,
F.
,
Liu
,
J.
,
Tian
,
L.
,
Chen
,
B.
,
Fu
,
Z.
,
Mao
,
S.
,
Jin
,
T.
,
Wang
,
Y.
,
He
,
X.
, and
Wang
,
G.
,
2023
, “
Octopus-Inspired Sensorized Soft Arm for Environmental Interaction
,”
Sci. Rob.
,
8
(
84
), p.
eadh7852
.
13.
Guo
,
K.
,
Liu
,
M.
,
Vella
,
D.
,
Suresh
,
S.
, and
Hsia
,
K. J.
,
2024
, “
Dehydration-Induced Corrugated Folding in Rhapis Excelsa Plant Leaves
,”
Proc. Natl. Acad. Sci. U. S. A.
,
121
(
17
), p.
e2320259121
.
14.
Jones
,
T. J.
,
Jambon-Puillet
,
E.
,
Marthelot
,
J.
, and
Brun
,
P. -T.
,
2021
, “
Bubble Casting Soft Robotics
,”
Nature
,
599
(
7884
), pp.
229
233
.
15.
Jones
,
T. J.
,
Dupuis
,
T.
,
Jambon-Puillet
,
E.
,
Marthelot
,
J.
, and
Brun
,
P. -T.
,
2023
, “
Soft Deployable Structures via Core-Shell Inflatables
,”
Phys. Rev. Lett.
,
130
(
12
), p.
128201
.
16.
Ario
,
I.
,
Nakazawa
,
M.
,
Tanaka
,
Y.
,
Tanikura
,
I.
, and
Ono
,
S.
,
2013
, “
Development of a Prototype Deployable Bridge Based on Origami Skill
,”
Autom. Constr.
,
32
, pp.
104
111
.
17.
García-Mora
,
C. J.
, and
Sánchez-Sánchez
,
J.
,
2021
, “
Actuation Methods for Deployable Scissor Structures
,”
Autom. Constr.
,
131
, p.
103894
.
18.
Chikahiro
,
Y.
,
Ario
,
I.
,
Pawlowski
,
P.
,
Graczykowski
,
C.
, and
Holnicki-Szulc
,
J.
,
2019
, “
Optimization of Reinforcement Layout of Scissor-Type Bridge Using Differential Evolution Algorithm
,”
Comput.-Aid. Civil Infrastr. Eng.
,
34
(
6
), pp.
523
538
.
19.
Xiong
,
J.
,
Ai
,
P.
,
Xu
,
J.
,
Yang
,
J.-Q.
, and
Feng
,
P.
,
2022
, “
A Comprehensive Study on CFRP Rapid Portable Bridge: Design, Experimental Investigation and Finite Element Analysis
,”
Comp. Struct.
,
289
, p.
115439
.
20.
Zhang
,
D.
,
Yuan
,
J.
,
Li
,
F.
,
Lv
,
Y.
,
Zhao
,
Q.
,
Gao
,
Y.
,
Mo
,
C.
, and
Yang
,
J.
,
2021
, “
Experimental Characterization of Static Behavior of a New GFRP–Metal Space Truss Deployable Bridge: Comparative Case Study
,”
J. Bridge Eng.
,
26
(
1
), p.
05020011
.
21.
Zhang
,
D.
,
Yuan
,
J.
,
Zhao
,
Q.
,
Li
,
F.
,
Gao
,
Y.
,
Zhu
,
R.
, and
Zhao
,
Z.
,
2020
, “
Static Performance of a New GFRP–Metal String Truss Bridge Subjected to Unsymmetrical Loads
,”
Steel Comp. Struct.
,
35
(
5
), pp.
641
657
.
22.
Doroftei
,
I.
,
Bujoreanu
,
C.
, and
Doroftei
,
I.
,
2018
, “
An Overview on the Applications of Mechanisms in Architecture. Part I: Bar Structures
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
444
(
5
), p.
052018
.
23.
Doroftei
,
I.
,
Bujoreanu
,
C.
, and
Doroftei
,
I.
,
2018
, “
An Overview on the Applications of Mechanisms in Architecture. Part Ii: Foldable Plate Structures
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
444
(
5
), p.
052019
.
24.
Zhai
,
Z.
,
Wu
,
L.
, and
Jiang
,
H.
,
2021
, “
Mechanical Metamaterials Based on Origami and Kirigami
,”
Appl. Phys. Rev.
,
8
(
4
), p.
041319
.
25.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
14
), pp.
2345
2362
.
26.
Jiang
,
H.
,
2022
, “
EML Webinar Overview: Origami-Based Metamaterials
,”
Extreme Mech. Lett.
,
50
, p.
101543
.
27.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.
28.
Chen
,
Y.
,
Xu
,
R.
,
Lu
,
C.
,
Liu
,
K.
,
Feng
,
J.
, and
Sareh
,
P.
,
2023
, “
Multi-Stability of Hexagonal Origami Hypar Based on Group Theory and Symmetry Breaking
,”
Int. J. Mech. Sci.
,
247
, p.
108196
.
29.
Liu
,
Z.
,
Fang
,
H.
,
Xu
,
J.
, and
Wang
,
K.
,
2023
, “
Digitized Design and Mechanical Property Reprogrammability of Multistable Origami Metamaterials
,”
J. Mech. Phys. Solids.
,
173
, p.
105237
.
30.
Mungekar
,
M.
,
Ma
,
L.
,
Yan
,
W.
,
Kackar
,
V.
,
Shokrzadeh
,
S.
, and
Jawed
,
M. K.
,
2023
, “
Design of Bistable Soft Deployable Structures via a Kirigami-Inspired Planar Fabrication Approach
,”
Adv. Mater. Technol.
,
8
(
16
), p.
2300088
.
31.
Xi
,
K.
,
Chai
,
S.
,
Ma
,
J.
, and
Chen
,
Y.
,
2023
, “
Multi-Stability of the Extensible Origami Structures
,”
Adv. Sci.
,
10
(
29
), p.
2303454
.
32.
Qiao
,
C.
,
Agnelli
,
F.
,
Pokkalla
,
D. K.
,
D’Ambrosio
,
N.
, and
Pasini
,
D.
,
2024
, “
Anisotropic Morphing in Bistable Kirigami Through Symmetry Breaking and Geometric Frustration
,”
Adv. Mater.
,
36
(
23
), p.
2313198
.
33.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Sang-Hoon Lee
,
D.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.
34.
Fonseca
,
L. M.
,
Rodrigues
,
G. V.
, and
Savi
,
M. A.
,
2022
, “
An Overview of the Mechanical Description of Origami-Inspired Systems and Structures
,”
Int. J. Mech. Sci.
,
223
, p.
107316
.
35.
Lu
,
L.
,
Leanza
,
S.
, and
Zhao
,
R. R.
,
2023
, “
Origami With Rotational Symmetry: A Review on Their Mechanics and Design
,”
Appl. Mech. Rev.
,
75
(
5
), p.
050801
.
36.
Zhu
,
Y.
,
Schenk
,
M.
, and
Filipov
,
E. T.
,
2022
, “
A Review on Origami Simulations: From Kinematics, to Mechanics, Toward Multiphysics
,”
Appl. Mech. Rev.
,
74
(
3
), p.
030801
.
37.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K.-W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.
38.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
Van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), pp.
1
11
.
39.
Dudte
,
L. H.
,
Choi
,
G. P.
,
Becker
,
K. P.
, and
Mahadevan
,
L.
,
2023
, “
An Additive Framework for Kirigami Design
,”
Nat. Comput. Sci.
,
3
(
5
), pp.
443
454
.
40.
Wang
,
L.
,
Chang
,
Y.
,
Wu
,
S.
,
Zhao
,
R. R.
, and
Chen
,
W.
,
2023
, “
Physics-Aware Differentiable Design of Magnetically Actuated Kirigami for Shape Morphing
,”
Nat. Commun.
,
14
(
1
), p.
8516
.
41.
Kim
,
M.
,
Lee
,
C.
,
Jeon
,
K.
,
Lee
,
J. Y.
,
Kim
,
Y.-J.
,
Lee
,
J. G.
,
Kim
,
H.
,
Cho
,
M.
, and
Kim
,
D.-N.
,
2023
, “
Harnessing a Paper-Folding Mechanism for Reconfigurable Dna Origami
,”
Nature
,
619
(
7968
), pp.
78
86
.
42.
Zhang
,
J.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Large Deformation and Energy Absorption of Additively Manufactured Auxetic Materials and Structures: A Review
,”
Comp. Part B: Eng.
,
201
, p.
108340
.
43.
Wang
,
M.
,
Karagiozova
,
D.
, and
Lu
,
G.
,
2024
, “
Quasi-Static Three-Point Bending of Sandwich Panels With Miura-ori Cores
,”
Int. J. Mech. Sci.
,
268
, p.
109010
.
44.
Ye
,
H.
,
Liu
,
Q.
,
Cheng
,
J.
,
Li
,
H.
,
Jian
,
B.
,
Wang
,
R.
,
Sun
,
Z.
,
Lu
,
Y.
, and
Ge
,
Q.
,
2023
, “
Multimaterial 3D Printed Self-Locking Thick-Panel Origami Metamaterials
,”
Nat. Commun.
,
14
(
1
), p.
1607
.
45.
Ma
,
J.
,
Zang
,
S.
,
Chen
,
Y.
, and
You
,
Z.
,
2022
, “
The Tessellation Rule and Properties Programming of Origami Metasheets Built With a Mixture of Rigid and Non-Rigid Square-Twist Patterns
,”
Engineering
,
17
, pp.
82
92
.
46.
Zhao
,
L.-J.
, and
Sun
,
B.-H.
,
2023
, “
Crushing Features of the Triangular Unit Origami Structure Foldcore
,”
Mech. Adv. Mater. Struc.
, pp.
1
13
.
47.
Sun
,
B.-H.
,
2019
, “
Universal Scaling Law of an Origami Paper Spring
,”
Theor. Appl. Mech. Lett.
,
9
(
6
), pp.
409
412
.
48.
Zhang
,
J.
,
Lu
,
G.
,
Zhang
,
Y.
, and
You
,
Z.
,
2021
, “
A Study on Ballistic Performance of Origami Sandwich Panels
,”
Int. J. Impact Eng.
,
156
, p.
103925
.
49.
Meeussen
,
A.
, and
van Hecke
,
M.
,
2023
, “
Multistable Sheets With Rewritable Patterns for Switchable Shape-Morphing
,”
Nature
,
621
(
7979
), pp.
516
520
.
50.
Liu
,
Z.
,
Fang
,
H.
,
Xu
,
J.
, and
Wang
,
K.-W.
,
2023
, “
Cellular Automata Inspired Multistable Origami Metamaterials for Mechanical Learning
,”
Adv. Sci.
,
10
(
34
), p.
2305146
.
51.
Karami
,
A.
,
Reddy
,
A.
, and
Nassar
,
H.
,
2024
, “
Curved-Crease Origami for Morphing Metamaterials
,”
Phys. Rev. Lett.
,
132
(
10
), p.
108201
.
52.
Wang
,
Y.
,
Ye
,
H.
,
He
,
J.
,
Ge
,
Q.
, and
Xiong
,
Y.
,
2024
, “
Electrothermally Controlled Origami Fabricated by 4D Printing of Continuous Fiber-Reinforced Composites
,”
Nat. Commun.
,
15
(
1
), p.
2322
.
53.
Song
,
Z.
,
Zhu
,
J.-F.
,
Wang
,
X.
,
Zhang
,
R.
,
Min
,
P.
,
Cao
,
W.
,
He
,
Y.
,
Han
,
J.
,
Wang
,
T.
,
Zhu
,
J.
, and
Wu
,
L.
,
2024
, “
Origami Metamaterials for Ultra-Wideband and Large-Depth Reflection Modulation
,”
Nat. Commun.
,
15
(
1
), p.
3181
.
54.
Jamalimehr
,
A.
,
Mirzajanzadeh
,
M.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2022
, “
Rigidly Flat-Foldable Class of Lockable Origami-Inspired Metamaterials With Topological Stiff States
,”
Nat. Commun.
,
13
(
1
), pp.
1
14
.
55.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2021
, “
Bio-Inspired Origami Metamaterials With Metastable Phases Through Mechanical Phase Transitions
,”
J. Appl. Mech.
,
88
(
9
), p.
091002
.
56.
Dang
,
X.
,
Lu
,
L.
,
Duan
,
H.
, and
Wang
,
J.
,
2022
, “
Deployment Kinematics of Axisymmetric Miura Origami: Unit Cells, Tessellations, and Stacked Metamaterials
,”
Int. J. Mech. Sci.
,
232
, p.
107615
.
57.
Wang
,
X.
,
Qu
,
H.
,
Li
,
X.
,
Kuang
,
Y.
,
Wang
,
H.
, and
Guo
,
S.
,
2023
, “
Multi-Triangles Cylindrical Origami and Inspired Metamaterials With Tunable Stiffness and Stretchable Robotic Arm
,”
PNAS Nexus
,
2
(
4
), p.
pgad098
.
58.
Wang
,
J.
,
Zhou
,
Y.
,
Xu
,
L.
,
Jiang
,
L.
, and
Wang
,
L.
,
2023
, “
Magnetic Kirigami by Laser Cutting
,”
Acta Mech. Solida Sinica
,
36
(
4
), pp.
594
601
.
59.
Meng
,
Z.
,
Gao
,
X.
,
Yan
,
H.
,
Liu
,
M.
,
Cao
,
H.
,
Mei
,
T.
, and
Chen
,
C. Q.
,
2024
, “
Cage-Shaped Self-Folding Mechanical Metamaterials
,”
Int. J. Solids. Struct.
,
286–287
, p.
112560
.
60.
Zhao
,
L.-J.
, and
Sun
,
B.-H.
,
2024
, “
Mechanical Characteristics of Bistable Inflatable Folding Beam Structure
,”
Int. J. Struct. Stability Dyn.
, p.
2550117
.
61.
Hu
,
Q.
,
Lu
,
G.
, and
Tse
,
K. M.
,
2024
, “
Compressive and Tensile Behaviours of 3D Hybrid Auxetic-Honeycomb Lattice Structures
,”
Int. J. Mech. Sci.
,
263
, p.
108767
.
62.
Zhang
,
Z.
,
Xu
,
Z.
,
Emu
,
L.
,
Wei
,
P.
,
Chen
,
S.
,
Zhai
,
Z.
,
Kong
,
L.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2023
, “
Active Mechanical Haptics With High-Fidelity Perceptions for Immersive Virtual Reality
,”
Nat. Mach. Intell.
,
5
(
6
), pp.
643
655
.
63.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
36
), p.
e2110023118
.
64.
Hu
,
N.
,
Li
,
B.
,
Bai
,
R.
,
Xie
,
K.
, and
Chen
,
G.
,
2023
, “
A Torsion-Bending Antagonistic Bistable Actuator Enables Untethered Crawling and Swimming of Miniature Robots
,”
Research
,
6
, p.
0116
.
65.
Johnson
,
K.
,
Arroyos
,
V.
,
Ferran
,
A.
,
Villanueva
,
R.
,
Yin
,
D.
,
Elberier
,
T.
,
Aliseda
,
A.
,
Fuller
,
S.
,
Iyer
,
V.
, and
Gollakota
,
S.
,
2023
, “
Solar-Powered Shape-Changing Origami Microfliers
,”
Sci. Rob.
,
8
(
82
), p.
eadg4276
.
66.
Zhang
,
Z.
,
Chen
,
G.
,
Xun
,
Y.
,
Long
,
Y.
,
Wang
,
J.
,
Wang
,
H.
, and
Angeles
,
J.
,
2023
, “
Bioinspired Rigid-Soft Hybrid Origami Actuator With Controllable Versatile Motion and Variable Stiffness
,”
IEEE Trans. Rob.
,
39
(
6
), pp.
4768
4784
.
67.
Jiang
,
S.
,
Li
,
B.
,
Zhao
,
J.
,
Wu
,
D.
,
Zhang
,
Y.
,
Zhao
,
Z.
,
Zhang
,
Y.
,
Yu
,
H.
,
Shao
,
K.
,
Zhang
,
C.
, and
Li
,
R.
,
2023
, “
Magnetic Janus Origami Robot for Cross-Scale Droplet Omni-Manipulation
,”
Nat. Commun.
,
14
(
1
), p.
5455
.
68.
Seyidoğlu
,
B.
, and
Rafsanjani
,
A.
,
2024
, “
A Textile Origami Snake Robot for Rectilinear Locomotion
,”
Device
,
2
(
2
), p.
100226
.
69.
Bahremandi-Tolou
,
M.
,
Asefi
,
M.
,
Sharib
,
S.
,
Vaseei
,
N.
, and
Vosough
,
A. H.
,
2022
, “
Kinetic Rigid Cover for Spherical Scissor-Like Mechanism
,”
Autom. Constr.
,
140
, p.
104349
.
70.
Zhang
,
T.
, and
Kawaguchi
,
K.
,
2021
, “
Folding Analysis for Thick Origami With Kinematic Frame Models Concerning Gravity
,”
Autom. Constr.
,
127
, p.
103691
.
71.
Jin
,
X.
,
Fang
,
H.
,
Yu
,
X.
,
Xu
,
J.
, and
Cheng
,
L.
,
2023
, “
Reconfigurable Origami-Inspired Window for Tunable Noise Reduction and Air Ventilation
,”
Build. Environ.
,
227
, p.
109802
.
72.
Meloni
,
M.
,
Ballegaard
,
E.
,
Zhang
,
Q.
,
Zhang
,
J.
,
Ma
,
R.
, and
Cai
,
J.
,
2023
, “
Shape and Motion Inverse Design of an Origami-Based Deployable Structure for Architectural Applications
,”
J. Struct. Eng.
,
149
(
12
), p.
04023174
.
73.
Zhao
,
L.-J.
, and
Sun
,
B.-H.
,
2024
, “
Bending Performance of an Inflation-Powered Bistable Folding Beam
,”
Eng. Struct.
,
300
, p.
117207
.
74.
Zhang
,
X.
, and
Chen
,
W.
,
2023
, “
Folding a Flat Rectangular Plate of Uniform-Thickness Panels Using Miura-ori
,”
Int. J. Mech. Sci.
,
257
, p.
108570
.
75.
Zhang
,
J.
,
Zhang
,
L.
, and
Wang
,
C.
,
2022
, “
Kresling Origami-Inspired Reconfigurable Antenna With Spherical Cap
,”
Int. J. Mech. Sci.
,
227
, p.
107470
.
76.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
Smart Materials, Adaptive Structures and Intelligent Systems
, Snowbird, UT, Sept. 16–18, Vol. 1, p.
V001T01A027
.
77.
Zhang
,
Z.
,
Long
,
Y.
,
Chen
,
G.
,
Wu
,
Q.
,
Wang
,
H.
, and
Jiang
,
H.
,
2023
, “
Soft and Lightweight Fabric Enables Powerful and High-Range Pneumatic Actuation
,”
Sci. Adv.
,
9
(
15
), p.
eadg1203
.
78.
Wang
,
D.
,
Jiang
,
C.
, and
Gu
,
G.
,
2023
, “
Modeling and Design of Lattice-Reinforced Pneumatic Soft Robots
,”
IEEE Trans. Rob.
,
40
, pp.
606
623
.
79.
Zhao
,
X.-S.
,
Jia
,
H.
,
Sun
,
Z.
, and
Yu
,
L.
,
2019
, “
Modeling Inflatable Fabric With Undevelopable Surfaces by Motion Folding Method
,”
J. Eng. Fibers Fabrics
,
14
, pp.
1
14
.
80.
Peng
,
H.
,
Li
,
N.
,
Li
,
F.
,
Zhang
,
L.
, and
Dong
,
K.
,
2022
, “
Development Simulation of an Inflatable Membrane Antenna Based on Extended Position-Based Dynamics
,”
Acta Mech. Sin.
,
38
(
7
), p.
521304
.
81.
Li
,
N.
,
Peng
,
H.
, and
Li
,
F.
,
2022
, “
Instantaneous Optimal Control of Inflatable Folded Structures
,”
Acta Astronaut.
,
195
, pp.
52
67
.
82.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.
83.
Wang
,
S.
,
Yan
,
P.
,
Huang
,
H.
,
Zhang
,
N.
, and
Li
,
B.
,
2023
, “
Inflatable Metamorphic Origami
,”
Research
,
6
, pp.
0133
.
84.
Zhang
,
C.
,
Zhang
,
Z.
,
Peng
,
Y.
,
Zhang
,
Y.
,
An
,
S.
,
Wang
,
Y.
,
Zhai
,
Z.
,
Xu
,
Y.
, and
Jiang
,
H.
,
2023
, “
Plug & Play Origami Modules With All-Purpose Deformation Modes
,”
Nat. Commun.
,
14
(
1
), p.
4329
.
You do not currently have access to this content.