The objective of this study was to produce linear and nonlinear viscoelastic models of eight major ligaments in the human ankle/foot complex for use in computer models of the lower extremity. The ligaments included in this study were the anterior talofibular (ATaF), anterior tibiofibular (ATiF), anterior tibiotalar (ATT), calcaneofibular (CF), posterior talofibular (PTaF), posterior tibiofibular (PTiF), posterior tibiotalar (PTT), and tibiocalcaneal (TiC) ligaments. Step relaxation and ramp tests were performed. Back-extrapolation was used to correct for vibration effects and the error introduced by the finite rise time in step relaxation tests. Ligament behavior was found to be nonlinear viscoelastic, but could be adequately modeled up to 15 percent strain using Fung’s quasilinear viscoelastic (QLV) model. Failure properties and the effects of preconditioning were also examined. [S0148-0731(00)01001-3]

1.
Viidik, A., 1966, “Biomechanics and Functional Adaptation of Tendons and Joint Ligaments,” F. G. Evans, ed., in Studies on the Anatomy and Function of Bone and Joints, Springer, Berlin, pp. 17–39.
2.
Fung, Y. C., 1981, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
3.
Woo
,
S. L.-Y.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
103
, pp.
293
298
.
4.
Lam
,
T. C.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1993
, “
Changes in the Cyclic and Static Relaxations of the Rabbit Medial Collateral Ligament Complex During Maturation
,”
J. Biomech.
,
26
, No.
1
, pp.
9
17
.
5.
Thornton
,
G. M.
,
Oliynyk
,
A.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1997
, “
Ligament Creep Cannot Be Predicted From Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament
,”
J. Orthop. Res.
,
15
, pp.
652
656
.
6.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
, pp.
757
762
.
7.
Kwan
,
M. K.
,
Lin
,
T. H.-C.
, and
Woo
,
S. L.-Y.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
, Nos. 4 and 5, pp.
447
452
.
8.
Soslowsky
,
L. J.
,
An
,
C. H.
,
DeBano
,
C. M.
, and
Carpenter
,
J. E.
,
1996
, “
Coracoacromial Ligament: In Situ Load and Viscoelastic Properties in Rotator Cuff Disease
,”
Clin. Orthop. Relat. Res.
,
330
, pp.
40
44
.
9.
Yahia
,
L. H.
,
Audet
,
J.
, and
Drouin
,
G.
,
1991
, “
Rheological properties of the human lumbar spine ligaments
,”
J. Biomed. Eng.
,
13
, No.
5
, pp.
399
406
.
10.
Attarian
,
D. E.
,
McCrackin
,
H. J.
,
DeVito
,
D. P.
,
McElhaney
,
J. E.
, and
Garrett
,
W. E.
,
1985
, “
Biomechanical Characteristics of Human Ankle Ligaments
,”
Foot & Ankle
,
6
, No.
2
, pp.
54
58
.
11.
Siegler
,
S.
,
Block
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Mechanical Characteristics of the Collateral Ligaments of the Human Ankle Joint
,”
Foot & Ankle
,
8
, No.
5
, pp.
234
242
.
12.
Begeman, P., and Aekbote, K., 1996, “Axial Load Strength and Some Ligament Properties of the Ankle Joint,” Proceedings of the Injury Prevention Through Biomechanics Symposium, pp. 125–135.
13.
Hurwitz, S. R., 1995, “Clinical Aspects of Foot/Ankle Injuries,” presented at the International Conference on Pelvic and Lower Extremity Injuries (PLEI).
14.
Klopp, G. S., Crandall, J. R., Hall, G. W., and Pilkey, W. D., 1997, “Foot and Ankle in Dynamic Axial Impacts to the Foot,” Proceedings of the International IRCOBI Conference, Hannover, Germany.
15.
Parenteau
,
C. S.
,
Viano
,
D. C.
, and
Petit
,
P. Y.
,
1998
, “
Biomechanical Properties of Human Cadaveric Ankle-Subtalar Joints in Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
120
, pp.
105
111
.
16.
Hall, G. W., Thunnissen, J. R., Crandall, J. R., and Pilkey, W. D., 1998, “Development of a Multibody Dynamic Model to Analyze Human Lower Extremity Impact Response and Injury,” Proceedings of the International IRCOBI Conference, pp. 117–134.
17.
Tannous, R. E., Bandak, F. A., Toridis, T. G., and Eppinger, R. H., 1996, “A Three-Dimensional Finite Element Model of the Human Ankle: Development and Preliminary Application to Axial Impulsive Loading,” SAE 962427, Proceedings of the 40th Stapp Car Crash Conference, pp. 219–238.
18.
Allard
,
P.
,
Thiry
,
P. S.
, and
Duhaime
,
M.
,
1985
, “
Estimation of the Ligament’s Role in Maintaining Foot Stability Using a Kinematic Model
,”
Med. Biol. Eng. Comput.
,
23
, pp.
237
242
.
19.
Schauer, D. A., Benda, B., Weiss, J., Perfect, S., Moor, E., II, and Kleinberger, M., 1995, “Lower Extremity Finite Element Model Development,” Proceedings of the International Conference on Pelvic and Lower Extremity Injury (PLEI).
20.
Bedewi
,
P. G.
, and
Bedewi
,
N. E.
,
1996
, “
Modelling of Occupant Biomechanics With Emphasis on the Analysis of Lower Extremity Injuries
,”
Int. J. Crashworthiness
,
1
, No.
1
, pp.
50
72
.
21.
Scott
,
S. H.
, and
Winter
,
D. A.
,
1993
, “
Biomechanical Model of the Human Foot: Kinematics and Kinetics During the Stance Phase of Walking
,”
J. Biomech.
,
26
, No.
9
, pp.
1091
1104
.
22.
Beaugonin, M., Haug, E., and Cesari, D. 1997, “Improvement of Numerical Ankle/Foot Model: Modeling of Deformable Bone,” SAE 973331, Proceedings of the 41st Stapp Car Crash Conference, Lake Buena Vista, FL, pp. 225–249.
23.
Pradas
,
M. M.
, and
Calleja
,
R. D.
,
1990
, “
Nonlinear Viscoelastic Behavior of the Flexor Tendon of the Human Hand
,”
J. Biomech.
,
23
, No.
8
, pp.
773
781
.
24.
Ray
,
R. G.
,
Christensen
,
J. C.
, and
Gusman
,
D. N.
,
1997
, “
Critical Evaluation of Anterior Drawer Measurement Methods in the Ankle
,”
Clin. Orthop. Relat. Res.
,
334
, pp.
215
224
.
25.
Gerber, J. P., 1998, “Persistent Disability Associated With Ankle Sprains: A Prospective Examination of an Athletic Population,” Proceedings of the American Orthopaedic Foot and Ankle Society (AOFAS) Winter Meeting, New Orleans, LA, Mar. 22.
26.
Myers
,
B. S.
,
McElhaney
,
J. H.
, and
Doherty
,
B. J.
,
1991
, “
The Viscoelastic Responses of the Human Cervical Spine in Torsion: Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,”
J. Biomech.
,
24
, No.
9
, pp.
811
817
.
27.
Woo
,
S. L.-Y.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1980
, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
,
102
, pp.
85
90
.
28.
Green
,
A. E.
, and
Rivlin
,
R. S.
,
1957
,
Arch. Ration. Mech. Anal.
,
1
, pp.
1
21
.
29.
Parham, K. R., Gordon, C. C., and Bensel, C. K., 1992, Anthropometry of the Foot and Lower Leg of U.S. Army Soldiers: Fort Jackson, SC-1985, United States Army Natick Research, Development and Engineering Center, Natick, MA.
30.
Chimich
,
D.
,
Shrive
,
N.
,
Frank
,
C.
,
Marchuk
,
L.
, and
Bray
,
R.
,
1992
, “
Water Content Alters Viscoelastic Behavior of the Normal Adolescent Rabbit Medial Collateral Ligament
,”
J. Biomech.
,
25
, No.
8
, pp.
831
837
.
31.
Dortmans
,
L. J. M. G.
,
Sauren
,
A. A. H. J.
, and
Rousseau
,
E. P. M.
,
1984
, “
Parameter Estimation Using the Quasi-Linear Viscoelastic Model Proposed by Fung
,”
ASME J. Biomech. Eng.
,
106
, pp.
198
203
.
32.
Nigul
,
I.
, and
Nigul
,
U.
,
1987
, “
On Algorithms of Evaluation of Fung’s Relaxation Function Parameters
,”
J. Biomech.
,
20
, No.
4
, pp.
343
352
.
33.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1999
, “
The Elastic Properties of Trabecular and Cortical Bone Tissues Are Similar: Results From Two Microscopic Measurement Techniques
,”
J. Biomech.
,
32
, pp.
437
441
.
You do not currently have access to this content.