Most arterial mechanics studies have focused on excised non-coronary vessels, with few studies validating the application of ex-vivo results to in-vivo conditions. A method was developed for testing the mechanical properties of intact left anterior descending coronary arteries under a variety of conditions. Vascular deformation and pressure were simultaneously measured with intravascular ultrasound and a pressure transducer guidewire, respectively. Results suggest the importance of understanding in-vivo factors such as myocardial support, vascular tone and local pressure fluctuations when applying ex-vivo coronary characterization data. With further development, this method can more accurately characterize the true in-vivo constitutive behavior in normal and atherosclerotic coronaries.

1.
Anonymous, 2000, “NHLBI Morbidity and mortality chart book, 2000,” Available online only at: http://www.nhlbi.nih.gov/resources/docs/cht-book.htm, October 18, 2001.
2.
Badimon, J. J., Gallo, R., Badimon, L., Chesoboro, J. H., and Fuster, V., 1998, “The Role of Atherosclerotic Plaque Disruption and Thrombosis in Acute Coronary Heart Disease,” In: Non-invasive imaging of atherosclerosis, Kluwer Academic Publishers, pp. 27–46.
3.
Beattie
,
D.
,
Xu
,
C.
,
Vito
,
R.
,
Glagov
,
S.
, and
Whang
,
M.
,
1998
, “
Mechanical Analysis of Heterogeneous, Atherosclerotic Human Aorta
,”
J. Biomech. Eng.
,
120
, pp.
602
607
.
4.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions a Structural Analysis with Histopathological Correlation
,”
Circulation
,
87
, pp.
1179
1187
.
5.
Fuster
,
V.
,
Stein
,
B.
,
Ambrose
,
J. A.
,
Badimon
,
L.
,
Badimon
,
J. J.
, and
Chesboro
,
J. H.
,
1990
, “
Atherosclerotic Plaque Rupture and Thrombosis, Evolving Concepts
,”
Circulation
,
82
, pp.
II47–II59
II47–II59
.
6.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
(
4
), pp.
850
8
.
7.
Bergel
,
D. H.
,
1961
, “
The Static Elastic Properties of the Arterial Wall
,”
J. Physiol. (London)
,
156
, pp.
445
457
.
8.
Chandran, K. B., and Vonesh, M. J., 1998, “The Role of Mechanics in Vascular Biology,” Kluwer Academic Publishers, pp. 130–168.
9.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-dimensional Stress Distribution in Arteries
,”
J. Biomech. Eng.
,
105
, pp.
268
274
.
10.
Cox
,
R. H.
,
1978
, “
Comparison of Carotid Artery Mechanics in the Rat, Rabbit, and Dog
,”
Am. J. Physiol.
,
234
(
3
), pp.
H280–H288
H280–H288
.
11.
Dobrin
,
P. B.
, and
Mrkvicka
,
R.
,
1992
, “
Estimating the Elastic Modulus of Non-atherosclerotic Elastic Arteries
,”
J. Hypertens.
,
10
(
6
), pp.
7
10
.
12.
Fung, Y. C., 1988, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, pp. 433.
13.
Gow
,
S. G.
, and
Hadfield
,
C. D.
,
1979
, “
The Elasticity of Canine and Human Coronary Arteries with Reference to Postmortem Changes
,”
Circulation
,
45
, pp.
588
594
.
14.
Hayashi
,
K.
,
1993
, “
Experimental Approaches on Measuring the Mechanical Properties and Constitutive Laws of Arterial Walls
,”
J. Biomech. Eng.
,
115
, pp.
481
488
.
15.
Megerman
,
J.
,
Hasson
,
J. E.
,
Warnock
,
D. F.
,
L'italien
,
G. J.
, and
Abbott
,
W. M.
,
1986
, “
Non Invasive Measurements of Nonlinear Arterial Elasticity
,”
Am. J. Physiol.
,
250
, pp.
H181–H188
H181–H188
.
16.
Zanchi
,
A.
,
Steriopulous
,
N.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
,
1998
, “
Differences in the Mechanical Properties of the Rat Carotid Artery In Vivo, In Situ, and In Vitro
,”
Hypertension
,
32
(
1
), pp.
180
5
.
17.
Coats
,
W. D.
,
Currier
,
J. W.
, and
Faxon
,
D. P.
,
1997
, “
Remodeling and Restenosis: Insights from Animal Studies
,”
Semin Interv Cardiol.
,
2
, pp.
153
158
.
18.
Gross
,
D. R.
,
Hunter
,
J. F.
, and
Allert
,
J. A.
,
1981
, “
Pressure-diameter Relationships in the Coronary Artery of Intact, Awake Calves
,”
J. Biomech.
,
14
(
9
), pp.
613
620
.
19.
Schwartz
,
R.
,
Edwards
,
W. D.
,
Bailey
,
K. R.
,
Camrud
,
A. R.
,
Jorgenson
,
M. A.
, and
Holmes
,
D. R.
,
1994
, “
Differential Neointimal Response to Coronary Artery Injury in Pigs and Dogs Implications for Restenotic Models
,”
Arterioscler. Thromb.
,
14
, pp.
395
400
.
20.
Mintz
,
G.
,
Nissen
,
S.
,
Anderson
,
W.
,
Bailey
,
S.
,
Erbel
,
R.
,
Fitzgerald
,
P.
,
Pinto
,
F.
,
Rosenfeld
,
K.
,
Siegel
,
R.
,
Tuzcu
,
E.
, and
Yock
,
P.
,
2001
, “
American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement, Reporting of Intravascular Ultrasound Studies
,”
J. Am. Coll. Cardiol.
,
37
(
5
), pp.
1478
92
.
21.
Klingensmith
,
J. D.
,
Shekhar
,
R.
, and
Vince
,
D. G.
,
2000
, “
Evaluation of Three-dimensional Segmentation Algorithms for the Identification of Luminal and Medial-adventitial Borders in Intravascular Ultrasound Images
,”
IEEE Trans. Med. Imaging
,
19
(
10
), pp.
996
1011
.
22.
Carmines
,
D. V.
,
McElhaney
,
J. H.
, and
Stack
,
R.
,
1991
, “
A Piece-wise Non-linear Elastic Stress Expression of Human and Pig Coronary Arteries Tested In Vitro
,”
J. Biomech.
,
24
(
10
), pp.
899
906
.
23.
Veress
,
A.
,
Vince
,
D.
,
Anderson
,
P.
,
Cornhill
,
J.
,
Herderick
,
E.
,
Klingensmith
,
J.
,
Kuban
,
B.
,
Greenberg
,
N.
, and
Thomas
,
J.
,
2000
, “
Vascular Mechanics of the Coronary Artery
,”
Z. Kardiol.
,
89
Suppl. 2, pp.
92
100
.
24.
Vonesh
,
M. A.
,
Cho
,
C. H.
,
Pinto
,
J. V.
,
Kane
,
B. J.
,
Lee
,
D. S.
,
Roth
,
S. I.
,
Chandran
,
K. B.
, and
McPherson
,
D. D.
,
1997
, “
Regional Vascular Mechanical Properties by 3-D Intravsacular Ultrasound with Finite Element Analysis
,”
Am. J. Physiol.
,
272
, pp.
H425–H437
H425–H437
.
25.
Williams
,
M. J. A.
,
Stewart
,
R. A. H.
,
Low
,
C. J. S.
, and
Wilkins
,
G.
,
1999
, “
Assessment of the Mechanical Properties of Coronary Arteries Using Intravascular Ultrasound: An In Vivo Study
,”
Int. J. Card. Imaging
,
15
, pp.
287
294
.
26.
Liu
,
S. Q.
, and
Fung
,
Y. C.
,
1992
, “
Changes in the Rheological Properties of Blood Vessel Tissue Remodeling in the Course of Development of Diabetes
,”
Biorheology
,
29
(
5–6
), pp.
443
57
.
27.
Arbab-Zadeh
,
A.
,
DeMaria
,
A. N.
,
Penny
,
W. F.
,
Russo
,
R. J.
,
Kimura
,
B. J.
, and
Bhargava
,
V.
,
1999
, “
Axial Movement of the Intravascular Ultrasound Probe During the Cardiac Cycle: Implications for Three-dimensional Reconstruction and Measurements of Coronary Dimensions
,”
Am. Heart J.
,
138
(
5
), pp.
865
72
.
28.
Wahle
,
A.
,
Prause
,
G.
,
DeJong
,
S.
, and
Sonka
,
M.
,
1999
, “
Geometrically correct 3-D Reconstruction of Intravascular Ultrasound Images by Fusion with Biplane Angiography—methods and Validation
,”
IEEE Trans. Med. Imaging
,
18
(
8
), pp.
686
699
.
29.
Klingensmith
,
J.
,
Vince
,
D. G.
,
Kuban
,
B. D.
,
Shekhar
,
R.
,
Tuzcu
,
E. M.
,
Nissen
,
S. E.
, and
Cornhill
,
J. F.
,
2000
, “
Assessment of Coronary Compensatory Enlargement by Three-dimensional Intravascular Ultrasound
,”
Int. J. Card. Imaging
,
16
(
2
), pp.
87
98
.
30.
de Korte
,
C. L.
,
Pasterkamp
,
G.
,
van der Steen
,
A. F.
,
Woutman
,
H. A.
, and
Bom
,
N.
,
2000
, “
Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro
,”
Circulation
,
102
(
6
), pp.
617
23
.
You do not currently have access to this content.