Accurate estimates of stress in an atherosclerotic lesion require knowledge of the material properties of its components (e.g., normal wall, fibrous plaque, calcified regions, lipid pools) that can only be approximated. This leads to considerable uncertainty in these computational predictions. A study was conducted to test the sensitivity of predicted levels of stress and strain to the parameter values of plaque used in finite element analysis. Results show that the stresses within the arterial wall, fibrous plaque, calcified plaque, and lipid pool have low sensitivities for variation in the elastic modulus. Even a ±50% variation in elastic modulus leads to less than a 10% change in stress at the site of rupture. Sensitivity to variations in elastic modulus is comparable between isotropic nonlinear, isotropic nonlinear with residual strains, and transversely isotropic linear models. Therefore, stress analysis may be used with confidence that uncertainty in the material properties generates relatively small errors in the prediction of wall stresses. Either isotropic nonlinear or anisotropic linear models provide useful estimates, however the predictions in regions of stress concentration (e.g., the site of rupture) are somewhat more sensitive to the specific model used, increasing by up to 30% from the isotropic nonlinear to orthotropic model in the present example. Changes resulting from the introduction of residual stresses are much smaller.

1.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions
,”
Circulation
,
1179
1187
.
2.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V. R.
, 1989, “Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques,” Lancet, pp. 941–944
3.
Humphrey
,
J. D.
,
1995
, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
, pp.
82
90
.
4.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
,
1994
, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
,
27
, pp.
195
204
.
5.
Patel
,
D. J.
,
Janicki
,
J. S.
, and
Carew
,
T. E.
,
1969
, “
Static Anisotropic Elastic Properties of the Aorta in Living Dogs
,”
Circ. Res.
,
25
, pp.
765
779
.
6.
Jones, R. M., 1975, “Macromechanical Behavior of a Lamina,” in Mechanics of Composite Materials, New York, McGraw-Hill Book Co., pp. 31–47.
7.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
, pp.
850
858
.
8.
Loree
,
H. M.
,
Tobias
,
B. J.
,
Gibson
,
L. J.
,
Kamm
,
R. D.
,
Small
,
D. M.
, and
Lee
,
R. T.
,
1994
, “
Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools
,”
Arterioscler. Thromb.
,
14
, pp.
230
234
.
9.
Bathe, K. J.: Finite Element Procedures. Saddle River, New Jersey, Prentice Hall, Inc, 1996, p 290.
10.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
, Jr.,
J. E.
and
Meister
,
J. J.
,
1997
, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
,
30
, pp.
777
86
.
11.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
.”
J. Elast.
,
61
, pp.
1
48
.
12.
ADINA: Automatic Dynamic Incremental Nonlinear Analysis, Watertown, MA.
13.
Dobrin
,
P. B.
,
1986
, “
Biaxial Anisotropy of Dog Carotid Artery: Estimation of Circumferential Elastic Modulus
,”
J. Biomech.
,
19
, pp.
351
358
.
You do not currently have access to this content.