Knowledge of the biomechanical properties of human atherosclerotic plaques is of essential importance for developing more insights in the pathophysiology of the cardiovascular system and for better predicting the outcome of interventional treatments such as balloon angioplasty. Available data are mainly based on uniaxial tests, and most of the studies investigate the mechanical response of fibrous plaque caps only. However, stress distributions during, for example, balloon angioplasty are strongly influenced by all components of atherosclerotic lesions. A total number of 107 samples from nine human high-grade stenotic iliac arteries were tested; associated anamnesis of donors reported. Magnetic resonance imaging was employed to test the usability of the harvested arteries. Histological analyses has served to characterize the different tissue types. Prepared strips of 7 different tissue types underwent cyclic quasistatic uniaxial tension tests in axial and circumferential directions; ultimate tensile stresses and stretches were documented. Experimental data of individual samples indicated anisotropic and highly nonlinear tissue properties as well as considerable interspecimen differences. The calcification showed, however, a linear property, with about the same stiffness as observed for the adventitia in high stress regions. The stress and stretch values at calcification fracture are smaller (179±56 kPa and 1.02±0.005) than for each of the other tissue components. Of all intimal tissues investigated, the lowest fracture stress occurred in the circumferential direction of the fibrous cap (254.8±79.8 kPa at stretch 1.182±0.1). The adventitia demonstrated the highest and the nondiseased media the lowest mechanical strength on average.

1.
Fuster, V., editor, 2002, Assessing and Modifying the Vulnerable Atherosclerotic Plaque: American Heart Association, Futura Publishing Company, Armonk.
2.
Kramer
,
C. M.
,
2002
, “
Magnetic Resonance Imaging to Identify the High-Risk Plaque
,”
Am. J. Cardiol.
,
90
, pp.
15L–17L
15L–17L
.
3.
Virmani
,
R.
,
Burke
,
A. P.
,
Kolodgie
,
F. D.
, and
Farb
,
A.
,
2003
, “
Pathology of the Thin-Cap Fibroatheroma: A Type of Vulnerable Plaque
,”
J. Invas. Cardiol.
,
16
, pp.
267
272
.
4.
Kavey
,
R. W.
,
Daniels
,
S. R.
,
Lauer
,
R. M.
,
Atkins
,
D. L.
,
Hayman
,
L. L.
, and
Taubert
,
K.
,
2003
, “
American Heart Association Guidelines for Primary Prevention of Atherosclerotic Cardiovascular Disease Beginning in Childhood
,”
Circulation
,
107
, pp.
1562
1566
.
5.
Rayner, M., and Petersen, S., 2000, European Cardiovascular Disease Statistics 2000, British Heart Foundation (BHF), London.
6.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A. J.
,
2002
, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
, pp.
753
767
.
7.
Richardson
,
P. D.
,
2002
, “
Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers
,”
Ann. Biomed. Eng.
,
30
, pp.
524
536
.
8.
Salunke
,
N. V.
, and
Topoleski
,
L. D. T.
,
1997
, “
Biomechanics of Atherosclerotic Plaque
,”
Crit. Rev. Biomed. Eng.
,
25
, pp.
243
285
.
9.
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer-Verlag, New York.
10.
Lendon
,
C. L.
,
Briggs
,
A. D.
,
Born
,
G. V. R.
,
Burleigh
,
M. C.
, and
Davies
,
M. J.
,
1988
, “
Mechanical Testing of Connective Tissue in the Search for Determinants of Atherosclerotic Plaque Cap Rupture
,”
Biochem. Soc. Trans.
,
16
, pp.
1032
1033
.
11.
Born, G. V. R., and Richardson, P. D., 1990, “Mechanical Properties of Human Atherosclerotic Lesions,” Pathology of Human Atherosclerotic Plaques, edited by S. Glagov, W. P. Newman, and S. A. Schaffer, Springer-Verlag, New York, pp. 413–423.
12.
Lendon
,
C. L.
,
Davies
,
M. J.
,
Born
,
G. V. R.
, and
Richardson
,
P. D.
,
1991
, “
Atherosclerotic Plaque Caps are Locally Weakened When Macrophages Density is Increased
,”
Atherosclerosis
,
87
, pp.
87
90
.
13.
Lee
,
R. T.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Kamm
,
R. D.
, and
Schoen
,
F. J.
,
1991
, “
Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques
,”
Circulation
,
83
, pp.
1764
1770
.
14.
Lee
,
R. T.
,
Richardson
,
S. G.
,
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Gharib
,
S. A.
,
Schoen
,
F. J.
, and
Pandian
,
N.
,
1992
, “
Prediction of Mechanical Properties of Human Atherosclerotic Tissue by High-Frequency Intravascular Ultrasound Imaging
,”
Arterioscler. Thromb.
,
12
, pp.
1
5
.
15.
McCord, B. N., 1992, “Fatigue of Atherosclerotic Plaque,” Ph.D. thesis, Department of Mechanical Engineering, Georgia Institute of Technology, GA.
16.
Lendon
,
G. L.
,
Davies
,
M. J.
,
Richardson
,
P. D.
, and
Born
,
G. V. R.
,
1993
, “
Testing of Small Connective Tissue Specimens for the Determination of the Mechanical Behavior of Atherosclerotic Plaques
,”
J. Biomed. Eng.
,
15
, pp.
27
33
.
17.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
,
1994
, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
,
27
, pp.
195
204
.
18.
Topoleski
,
L. D. T.
,
Salunke
,
N. V.
,
Humphrey
,
J. D.
, and
Mergner
,
W. J.
,
1997
, “
Composition- and History-Dependent Radial Compressive Behavior of Human Atherosclerotic Plaque
,”
J. Biomed. Mater. Res.
,
35
, pp.
117
127
.
19.
Topoleski
,
L. D. T.
, and
Salunke
,
N. V.
,
2000
, “
Mechanical Behavior of Calcified Plaques: A Summary of Compression and Stress-Relaxation Experiments
,”
Z. Kardiol Suppl.
,
89
, Suppl. 2, pp.
II/85–II/91
II/85–II/91
.
20.
Salunke
,
N. V.
,
Topoleski
,
L. D. T.
,
Humphrey
,
J. D.
, and
Mergener
,
W. J.
,
2001
, “
Compressive Stress-Relaxation of Human Atherosclerotic Plaque
,”
J. Biomed. Mater. Res.
,
55
, pp.
236
241
.
21.
Schulze-Bauer
,
C. A. J.
,
Mo¨rth
,
C.
, and
Holzapfel
,
G. A.
,
2003
, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
J. Biomech. Eng.
,
125
, pp.
395
406
.
22.
Stary, H. C., 2003, Atlas of Atherosclerosis: Progression and Regression, The Parthenon Publishing Group Limited, Boca Raton, London, New York, Washington, D.C., 2nd ed.
23.
Schulze-Bauer
,
C. A. J.
, and
Holzapfel
,
G. A.
,
2003
, “
Determination of Constitutive Equations for Human Arteries From Clinical Data
,”
J. Biomech.
,
36
, pp.
185
169
.
24.
Holzapfel, G. A., Schulze-Bauer, C. A. J., and Stadler, M., 2000, “Mechanics of Angioplasty: Wall, Balloon, and Stent,” Mechanics in Biology, edited by J. Casey and G. Bao, The American Society of Mechanical Engineers (ASME), New York, AMD-Vol. 242/BED-Vol. 46, pp. 141–156.
25.
Demer
,
L. L.
,
1995
, “
A Skeleton in the Atherosclerosis Closet
,”
Circulation
,
92
, pp.
2029
2032
.
26.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
, pp.
850
858
.
27.
Loree
,
H. M.
,
Tobias
,
B. J.
,
Gibson
,
L. J.
,
Kamm
,
R. D.
,
Small
,
D. M.
, and
Lee
,
R. T.
,
1994
, “
Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools
,”
Arterioscler. Thromb.
,
14
, pp.
230
234
.
28.
Williamson
,
S. D.
,
Lam
,
Y.
,
Younis
,
H. F.
,
Huang
,
H.
,
Patel
,
S.
,
Kaazempur-Mofrad
,
M. R.
, and
Kamm
,
R. D.
,
2003
, “
On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties
,”
J. Biomech. Eng.
,
125
, pp.
147
155
.
29.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V. R.
,
1989
, “
Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques
,”
Lancet
,
2
(
8669
), pp.
941
944
.
30.
Hickler
,
R. B.
,
1990
, “
Aortic and Large Artery Stiffness: Current Methodology and Clinical Correlations
,”
Clin. Cardiol.
,
13
, pp.
317
322
.
31.
Schulze-Bauer
,
C. A. J.
,
Regitnig
,
P.
, and
Holzapfel
,
G.
,
2002
, “
Mechanics of the Human Femoral Adventitia Including High-Pressure Response
,”
Am. J. Physiol.
,
282
, pp.
H2427–H2440
H2427–H2440
.
32.
Moreno
,
P. R.
,
Purushothaman
,
K. R.
,
Fuster
,
V.
, and
O’Connor
,
W. N.
,
2002
, “
Intimomedial Interface Damage and Adventitial Inflammation is Increased Beneath Disrupted Atherosclerosis in the Aorta: Implications for Plaque Vulnerability
,”
Circulation
,
105
, pp.
2504
2511
.
33.
Berberian
,
P. A.
, and
Fowler
,
S.
,
1979
, “
The Subcellular Biochemistry of Human Arterial Lesions. I. Biochemical Constituents and Marker Enzymes in Diseased and Unaffected Portions of Human Aortic Specimens
,”
Exp. Mol. Pathol.
,
30
, pp.
27
40
.
34.
Rhodin, J. A. G., 1980, “Architecture of the Vessel Wall,” Handbook of Physiology, The Cardiovascular System, edited by D. F. Bohr, A. D. Somlyo, and H. V. Sparks, 2, American Physiologial Society, Bethesda, Maryland, pp. 1–31.
35.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions: A Structural Analysis With Histopathological Correlation
,”
Circulation
,
87
, pp.
1179
1187
.
You do not currently have access to this content.