The collagen network and proteoglycan matrix of articular cartilage are thought to play an important role in controlling the stresses and strains in and around chondrocytes, in regulating the biosynthesis of the solid matrix, and consequently in maintaining the health of diarthrodial joints. Understanding the detailed effects of the mechanical environment of chondrocytes on cell behavior is therefore essential for the study of the development, adaptation, and degeneration of articular cartilage. Recent progress in macroscopic models has improved our understanding of depth-dependent properties of cartilage. However, none of the previous works considered the effect of realistic collagen orientation or depth-dependent negative charges in microscopic models of chondrocyte mechanics. The aim of this study was to investigate the effects of the collagen network and fixed charge densities of cartilage on the mechanical environment of the chondrocytes in a depth-dependent manner. We developed an anisotropic, inhomogeneous, microstructural fibril-reinforced finite element model of articular cartilage for application in unconfined compression. The model consisted of the extracellular matrix and chondrocytes located in the superficial, middle, and deep zones. Chondrocytes were surrounded by a pericellular matrix and were assumed spherical prior to tissue swelling and load application. Material properties of the chondrocytes, pericellular matrix, and extracellular matrix were obtained from the literature. The loading protocol included a free swelling step followed by a stress-relaxation step. Results from traditional isotropic and transversely isotropic biphasic models were used for comparison with predictions from the current model. In the superficial zone, cell shapes changed from rounded to elliptic after free swelling. The stresses and strains as well as fluid flow in cells were greatly affected by the modulus of the collagen network. The fixed charge density of the chondrocytes, pericellular matrix, and extracellular matrix primarily affected the aspect ratios (height/width) and the solid matrix stresses of cells. The mechanical responses of the cells were strongly location and time dependent. The current model highlights that the collagen orientation and the depth-dependent negative fixed charge densities of articular cartilage have a great effect in modulating the mechanical environment in the vicinity of chondrocytes, and it provides an important improvement over earlier models in describing the possible pathways from loading of articular cartilage to the mechanical and biological responses of chondrocytes.

1.
Benninghoff
,
A.
, 1925, “
Form und bau der Gelenkknorpel in Ihren Beziehungen zur Function. II. Der Aufbau des Gelenkknorpels in Seinen Bezeihungen zur Funktion
,”
Z. Zellforsch Mikrosk Anat.
0044-3794,
2
, pp.
783
862
.
2.
Chen
,
S. S.
,
Falcovitz
,
Y. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
, 2001, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
1063-4584,
9
(
6
), pp.
561
569
.
3.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2000, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1533
1541
.
4.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 1997, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
15
(
4
), pp.
499
506
.
5.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2002, “
Elastic Anisotropy of Articular Cartilage is Associated With the Microstructures of Collagen Fibers and Chondrocytes
,”
J. Biomech.
0021-9290,
35
(
7
), pp.
931
942
.
6.
Arokoski
,
J. P.
,
Jurvelin
,
J. S.
,
Väätäinen
,
U.
, and
Helminen
,
H. J.
, 2000, “
Normal and Pathological Adaptations of Articular Cartilage to Joint Loading
,”
Scand. J. Med. Sci. Sports
0905-7188,
10
(
4
), pp.
186
198
.
7.
Wilson
,
W.
,
van Rietbergen
,
B.
,
van Donkelaar
,
C. C.
, and
Huiskes
,
R.
, 2003, “
Pathways of Load-Induced Cartilage Damage Causing Cartilage Degeneration in the Knee After Meniscectomy
,”
J. Biomech.
0021-9290,
36
(
6
), pp.
845
851
.
8.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1195
1204
.
9.
Korhonen
,
R. K.
,
Wong
,
M.
,
Arokoski
,
J.
,
Lindgren
,
R.
,
Helminen
,
H. J.
,
Hunziker
,
E. B.
, and
Jurvelin
,
J. S.
, 2002, “
Importance of the Superficial Tissue Layer for the Indentation Stiffness of Articular Cartilage
,”
Med. Eng. Phys.
1350-4533,
24
(
2
), pp.
99
108
.
10.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2003, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
0021-9290,
36
(
9
), pp.
1373
1379
.
11.
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Korhonen
,
R. K.
,
Rieppo
,
J.
,
Saarakkala
,
S.
,
Nieminen
,
M. T.
,
Hirvonen
,
J.
, and
Jurvelin
,
J. S.
, 2003, “
Biomechanical Properties of Knee Articular Cartilage
,”
Biorheology
0006-355X,
40
(
1–3
), pp.
133
140
.
12.
Maroudas
,
A.
, 1968, “
Physicochemical Properties of Cartilage in the Light of ion Exchange Theory
,”
Biophys. J.
0006-3495,
8
(
5
), pp.
575
595
.
13.
Guilak
,
F.
, 2000, “
The Deformation Behavior and Viscoelastic Properties of Chondrocytes in Articular Cartilage
,”
Biorheology
0006-355X,
37
(
1–2
), pp.
27
44
.
14.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1663
1673
.
15.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2006, “
Analysis of the Mechanical Behavior of Chondrocytes in Unconfined Compression Tests for Cyclic Loading
,”
J. Biomech.
0021-9290,
39
(
4
), pp.
603
616
.
16.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2000, “
Finite Element Simulation of Location- and Time-Dependent Mechanical Behavior of Chondrocytes in Unconfined Compression Tests
,”
Ann. Biomed. Eng.
0090-6964,
28
(
3
), pp.
318
330
.
17.
Likhitpanichkul
,
M.
,
Guo
,
X. E.
, and
Mow
,
V. C.
, 2005, “
The Effect of Matrix Tension-Compression Nonlinearity and Fixed Negative Charges on Chondrocyte Responses in Cartilage
,”
Mol. Cell. Biochem.
0300-8177,
2
(
4
), pp.
191
204
.
18.
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Rieppo
,
J.
,
Lappalainen
,
R.
,
Konttinen
,
Y. T.
, and
Jurvelin
,
J. S.
, 2006, “
Collagen Network of Articular Cartilage Modulates Fluid Flow and Mechanical Stresses in Chondrocyte
,”
Biomech. Model. Mechanobiol.
,
5
(
2–3
), pp.
150
159
.
19.
Han
,
S.-K.
,
Federico
,
S.
,
Grillo
,
A.
,
Giaquinta
,
G.
, and
Herzog
,
W.
, 2007, “
The Mechanical Behavior of Chondrocytes Predicted With a Micro-Structural Model of Articular Cartilage
,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
139
150
.
20.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
21.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Theory of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
793
802
.
22.
Wilson
,
W.
,
van Donkelaar
,
C. C.
, and
Huyghe
,
J. M.
, 2005, “
A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
158
165
.
23.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
24.
Mow
,
V. C.
, and
Guo
,
X. E.
, 2002, “
Mechano-Electrochemical Properties of Articular Cartilage: Their Inhomogeneities and Anisotropies
,”
Annu. Rev. Biomed. Eng.
1523-9829,
4
, pp.
175
209
.
25.
Rieppo
,
J.
,
Hyttinen
,
M. M.
,
Lappalainen
,
R.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
, 2004, “
Spatial Determination of Water, Collagen and Proteoglycan Contents by Fourier Transform Infrared Imaging and Digital Densitometry
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
29
, p.
1021
.
26.
Lai
,
W. M.
,
Sun
,
D. D.
,
Ateshian
,
G. A.
,
Guo
,
X. E.
, and
Mow
,
V. C.
, 2002, “
Electrical Signals for Chondrocytes in Cartilage
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
39
45
.
27.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
,
Ito
,
K.
, and
Huiskes
,
R.
, 2004, “
Stresses in the Local Collagen Network of Articular Cartilage: A Poroviscoelastic Fibril-Reinforced Finite Element Study
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
357
366
.
28.
Arokoski
,
J. P.
,
Hyttinen
,
M. M.
,
Lapveteläinen
,
T.
,
Takacs
,
P.
,
Kosztaczky
,
B.
,
Modis
,
L.
,
Kovanen
,
V.
, and
Helminen
,
H.
, 1996, “
Decreased Birefringence of the Superficial Zone Collagen Network in the Canine Knee (Stifle) Articular Cartilage After Long Distance Running Training, Detected by Quantitative Polarised Light Microscopy
,”
Ann. Rheum. Dis.
0003-4967,
55
(
4
), pp.
253
264
.
29.
Kaab
,
M. J.
,
Gwynn
,
I. A.
, and
Notzli
,
H. P.
, 1998, “
Collagen Fibre Arrangement in the Tibial Plateau Articular Cartilage of Man and Other Mammalian Species
,”
J. Anat.
0021-8782,
193
, pp.
23
34
.
30.
Huyghe
,
J. M.
,
Houben
,
G. B.
,
Drost
,
M. R.
, and
van Donkelaar
,
C. C.
, 2003, “
An Ionised/Non-Ionised Dual Porosity Model of Intervertebral Disc Tissue
,”
Biomech. Model. Mechanobiol.
,
2
(
1
), pp.
3
19
.
31.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1995, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
0736-0266,
13
(
3
), pp.
410
421
.
32.
Quinn
,
T. M.
,
Hunziker
,
E. B.
, and
Hauselmann
,
H. J.
, 2005, “
Variation of Cell and Matrix Morphologies in Articular Cartilage Among Locations in the Adult Human Knee
,”
Osteoarthritis Cartilage
1063-4584,
13
(
8
), pp.
672
678
.
33.
Clark
,
A. L.
,
Barclay
,
L. D.
,
Matyas
,
J. R.
, and
Herzog
,
W.
, 2003, “
In Situ Chondrocyte Deformation With Physiological Compression of the Feline Patellofemoral Joint
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
553
568
.
34.
Chahine
,
N. O.
,
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
(
8
), pp.
1251
1261
.
35.
Kiviranta
,
P.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Töyräs
,
J.
, and
Jurvelin
,
J. S.
, 2006, “
Collagen Network Primarily Controls Poisson’s Ratio of Bovine Articular Cartilage in Compression
,”
J. Orthop. Res.
0736-0266,
24
(
4
), pp.
690
699
.
36.
Buschmann
,
M. D.
,
Hunziker
,
E. B.
,
Kim
,
Y. J.
, and
Grodzinsky
,
A. J.
, 1996, “
Altered Aggrecan Synthesis Correlates With Cell and Nucleus Structure in Statically Compressed Cartilage
,”
J. Cell. Sci.
0021-9533,
109
, pp.
499
508
.
37.
Buschmann
,
M. D.
,
Kim
,
Y. J.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
, 1999, “
Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading is Localized to Regions of High Interstitial Fluid Flow
,”
Arch. Biochem. Biophys.
0003-9861,
366
(
1
), pp.
1
7
.
38.
Quinn
,
T. M.
,
Grodzinsky
,
A. J.
,
Buschmann
,
M. D.
,
Kim
,
Y. J.
, and
Hunziker
,
E. B.
, 1998, “
Mechanical Compression Alters Proteoglycan Deposition and Matrix Deformation Around Individual Cells in Cartilage Explants
,”
J. Cell. Sci.
0021-9533,
111
, pp.
573
583
.
39.
Mow
,
V. C.
,
Wang
,
C. C.
, and
Hung
,
C. T.
, 1999, “
The Extracellular Matrix, Interstitial Fluid and Ions as a Mechanical Signal Transducer in Articular Cartilage
,”
Osteoarthritis Cartilage
1063-4584,
7
(
1
), pp.
41
58
.
40.
Guilak
,
F.
,
Erickson
,
G. R.
, and
Ting-Beall
,
H. P.
, 2002, “
The Effects of Osmotic Stress on the Viscoelastic and Physical Properties of Articular Chondrocytes
,”
Biophys. J.
0006-3495,
82
(
2
), pp.
720
727
.
41.
Alexopoulos
,
L. G.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
The Biomechanical Role of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
Acta Biomater.
,
1
(
3
), pp.
317
325
.
42.
Alexopoulos
,
L. G.
,
Williams
,
G. M.
,
Upton
,
M. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
Osteoarthritic Changes in the Biphasic Mechanical Properties of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
509
517
.
43.
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2003, “
Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
323
333
.
44.
Wong
,
M.
,
Wuethrich
,
P.
,
Buschmann
,
M. D.
,
Eggli
,
P.
, and
Hunziker
,
E.
, 1997, “
Chondrocyte Biosynthesis Correlates With Local Tissue Strain in Statically Compressed Adult Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
15
(
2
), pp.
189
196
.
45.
Garcia
,
J. J.
, and
Cortes
,
D. H.
, 2006, “
A Nonlinear Biphasic Viscohyperelastic Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
2991
2998
.
46.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
(
9
), pp.
673
682
.
47.
Li
,
L. P.
, and
Herzog
,
W.
, 2004, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Theory and Numerical Formulation
,”
Biorheology
0006-355X,
41
(
3–4
), pp.
181
194
.
48.
Li
,
L. P.
,
Herzog
,
W.
,
Korhonen
,
R. K.
, and
Jurvelin
,
J. S.
, 2005, “
The Role of Viscoelasticity of Collagen Fibers in Articular Cartilage: Axial Tension Versus Compression
,”
Med. Eng. Phys.
1350-4533,
27
(
1
), pp.
51
57
.
49.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
, 1981, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
2
), pp.
61
66
.
50.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
, 2000, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
189
195
.
51.
McGann
,
L. E.
,
Stevenson
,
M.
,
Muldrew
,
K.
, and
Schachar
,
N.
, 1988, “
Kinetics of Osmotic Water Movement in Chondrocytes Isolated From Articular Cartilage and Applications to Cryopreservation
,”
J. Orthop. Res.
0736-0266,
6
(
1
), pp.
109
115
.
52.
Xu
,
X.
,
Cui
,
Z.
, and
Urban
,
J. P.
, 2003, “
Measurement of the Chondrocyte Membrane Permeability to Me2SO, Glycerol and, 1,2-Propanediol
,”
Med. Eng. Phys.
1350-4533,
25
(
7
), pp.
573
579
.
53.
Ateshian
,
G. A.
,
Costa
,
K. D.
, and
Hung
,
C. T.
, 2007, “
A Theoretical Analysis of Water Transport Through Chondrocytes
,”
Biomech. Model. Mechanobiol.
,
6
(
1–2
), pp.
91
101
.
54.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
, 1986, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
0736-0266,
4
(
4
), pp.
379
392
.
55.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Töyräs
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2002, “
Comparison of the Equilibrium Response of Articular Cartilage in Unconfined Compression, Confined Compression and Indentation
,”
J. Biomech.
0021-9290,
35
(
7
), pp.
903
909
.
56.
Leipzig
,
N. D.
, and
Athanasiou
,
K. A.
, 2005, “
Unconfined Creep Compression of Chondrocytes
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
77
85
.
57.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2006, “
Biomechanics of Single Zonal Chondrocytes
,”
J. Biomech.
0021-9290,
39
(
9
), pp.
1595
1602
.
You do not currently have access to this content.