Biomechanical studies suggest that one determinant of abdominal aortic aneurysm (AAA) rupture is related to the stress in the wall. In this regard, a reliable and accurate stress analysis of an in vivo AAA requires a suitable 3D constitutive model. To date, stress analysis conducted on AAA is mainly driven by isotropic tissue models. However, recent biaxial tensile tests performed on AAA tissue samples demonstrate the anisotropic nature of this tissue. The purpose of this work is to study the influence of geometry and material anisotropy on the magnitude and distribution of the peak wall stress in AAAs. Three-dimensional computer models of symmetric and asymmetric AAAs were generated in which the maximum diameter and length of the aneurysm were individually controlled. A five parameter exponential type structural strain-energy function was used to model the anisotropic behavior of the AAA tissue. The anisotropy is determined by the orientation of the collagen fibers (one parameter of the model). The results suggest that shorter aneurysms are more critical when asymmetries are present. They show a strong influence of the material anisotropy on the magnitude and distribution of the peak stress. Results confirm that the relative aneurysm length and the degree of aneurysmal asymmetry should be considered in a rupture risk decision criterion for AAAs.

1.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics. Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
2.
Menard
,
M. T.
,
Chew
,
D. K. W.
,
Chan
,
R. K.
,
Conte
,
M. S.
,
Donaldson
,
M. C.
,
Mannick
,
J. A.
,
Whittemore
,
A. D.
, and
Belkin
,
M.
, 2003, “
Outcome in Patients at High Risk after Open Surgical Repair of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
37
, pp.
285
292
.
3.
Brewester
,
D. C.
,
Cronenwett
,
J. L.
,
Hallett
,
J. W.
, Jr.
,
Johnston
,
K. W.
,
Krupski
,
W. C.
, and
Matsumura
,
J. S.
, 2003, “
Guidelines for the Treatment of Abdominal Aortic Aneurysms, Report of a Subcommittee of Joint Council of the American Association of Vascular Surgery and Society of Vascular Surgery
,”
J. Vasc. Surg.
0741-5214,
37
, pp.
1106
1117
.
4.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
, 2005, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture, Arterioscler.
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
, pp.
1558
1566
.
5.
Coady
,
M. A.
,
Rizzo
,
J. A.
,
Hammond
,
G. L.
,
Mandapati
,
D.
,
Darr
,
U.
,
Kopf
,
G. S.
, and
Elefteriades
,
J. A.
, 1997, “
What is the Appropriate Size Criterion for Resection of Thoracic Aortic Aneurysms?
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
113
, pp.
476
491
.
6.
Drangova
,
M.
,
Holdsworth
,
D. W.
,
Boyd
,
C. J.
,
Dunmore
,
P. J.
,
Roach
,
M. R.
, and
Fenster
,
A.
, 1993, “
Elasticity and Geometry Measurements of Vascular Specimens Using a High-Resolution Laboratory CT Scanner
,”
Physiol. Meas
0967-3334,
14
, pp.
277
290
.
7.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 1996, “
Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
0090-6964,
24
, pp.
573
582
.
8.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
, 1998, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
0741-5214,
27
, pp.
632
639
.
9.
Thubrikar
,
M. J.
,
Al-Soudi
,
J.
, and
Robicsek
,
F.
, 2001, “
Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model
,”
Ann. Vasc. Surg.
0890-5096,
15
, pp.
355
366
.
10.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
0741-5214,
37
, pp.
724
732
.
11.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
, 2004, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Surg.
0950-821X,
28
, pp.
168
176
.
12.
Vande Geest
,
J. P.
,
Wang
,
D. H.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
Towards a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
1908
1916
.
13.
Elger
,
D. F.
,
Blackketter
,
R. S.
,
Budwig
,
R. S.
, and
Johansen
,
K. H.
, 1996, “
The Influence of Shape on the Stresses in Model Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
326
332
.
14.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
0021-9290,
33
, pp.
475
482
.
15.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
0021-9290,
39
, pp.
1324
1334
.
16.
Vande Geest
,
J. P.
, 2005, “
Towards an Improved Rupture Potential Index for Abdominal Aortic Aneurysms: Anisotropic Constitutive Modeling and Noninvasive Wall Strength Estimation
,” Ph.D. thesis, University of Pittsburgh.
17.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
18.
Demiray
,
H.
, 1972, “
A Note on the Elasticity of Soft Biological Tissues
,”
J. Biomech.
0021-9290,
5
, pp.
309
311
.
19.
Inzoli
,
F.
,
Boschetti
,
F.
,
Zappa
,
M.
,
Longo
,
T.
, and
Fumero
,
R.
, 1993, “
Biomechanical Factors in Abdominal Aortic Aneurysm Rupture
,”
Eur. J. Vasc. Surg.
0950-821X,
7
, pp.
667
674
.
20.
Holzapfel
,
G. A.
, 2000, “
Nonlinear Solid Mechanics
,”
A Continuum Approach for Engineering
,
Wiley
,
Chichester
.
21.
Holzapfel
,
G. A.
, and
Weizsäcker
,
H. W.
, 1998, “
Biomechanical Behavior of the Arterial Wall and its Numerical Characterization
,”
Comput. Biol. Med.
0010-4825,
28
, pp.
377
392
.
22.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Gasser
,
T. C.
, 2005, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Design
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
166
180
.
23.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
T. C.
, and
Regitnig
,
P.
, 2005, “
Determination of the Layer-Specific Mechanical Properties of Human Coronary Arteries With Non-Atherosclerotic Intimal Thickening, and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
, pp.
H2048
2058
.
24.
Stenbaek
,
J.
,
Kalin
,
B.
,
Swedenborg
,
J.
, 2006, “
Growth of Thrombus May be a Better Predictor of Rupture Than Diameter in Patients With Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
20
, pp.
466
494
.
25.
Darling
,
R. C.
,
Messina
,
C. R.
,
Brewster
,
D. C.
, and
Ottinger
,
L. W.
, 1977, “
Autopsy Study of Unoperated Abdominal Aortic Aneurysms
,”
Circulation
0009-7322,
56
(
II
), pp.
161
164
.
26.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Thom
,
S. A. McG
,
Hughes
,
A. D.
,
Crane
,
J.
, and
Xu
,
X. Y.
, 2005, “
The Effect of Thrombus on Wall Sress in an Abdominal Aortic Aneurysm Model
,”
Proceedings of the Second International Conference on Computational Bioengineering
,
Lisbon
,
Portugal
, pp.
413
421
.
27.
Brown
,
L. C.
, and
Powell
,
J. T.
, 1999, “
Risk Factors for Aneurysm Rupture in Patients Kept Under Ultrasound Surveillance. UK Small Aneurysm Trial Participants
,”
Ann. Surg.
0003-4932,
230
, pp.
289
296
.
28.
Powell
,
J. T.
, and
Brown
,
L. C.
, 2001, “
The Natural History of Abdominal Aortic Aneurysms and Their Risk of Rupture
,”
Acta Chir. Belg.
0001-5458,
101
, pp.
11
16
.
29.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
Simão da Silva
,
E.
, 2005, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
39
, pp.
3010
3016
.
30.
Speelman
,
L.
,
Bohra
,
A.
,
Bosboom
,
E. M. H.
,
Schurink
,
G. W. H.
,
van de Vosse
,
F. N.
,
Makaorun
,
M. S.
, and
Vorp
,
D. A.
, 2007, “
Effects of Wall Calcifications in Patient-Specific Wall Stress Analyses of Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
105
109
.
You do not currently have access to this content.