A noninvasive method for estimating regional myocardial contractility in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent infarction-induced heart failure. As a first step toward developing such a method, an explicit finite element (FE) model-based formal optimization of regional myocardial contractility in a sheep with left ventricular (LV) aneurysm was performed using tagged magnetic resonance (MR) images and cardiac catheterization pressures. From the tagged MR images, three-dimensional (3D) myocardial strains, LV volumes, and geometry for the animal-specific 3D FE model of the LV were calculated, while the LV pressures provided physiological loading conditions. Active material parameters (Tmax_B and Tmax_R) in the noninfarcted myocardium adjacent to the aneurysm (borderzone) and in the myocardium remote from the aneurysm were estimated by minimizing the errors between FE model-predicted and measured systolic strains and LV volumes using the successive response surface method for optimization. The significant depression in optimized Tmax_B relative to Tmax_R was confirmed by direct ex vivo force measurements from skinned fiber preparations. The optimized values of Tmax_B and Tmax_R were not overly sensitive to the passive material parameters specified. The computation time of less than 5 h associated with our proposed method for estimating regional myocardial contractility in vivo makes it a potentially very useful clinical tool.

1.
Guccione
,
J. M.
,
Walker
,
J. C.
,
Beitler
,
J. R.
,
Moonly
,
S. M.
,
Zhang
,
P.
,
Guttman
,
M. A.
,
Ozturk
,
C.
,
McVeigh
,
E. R.
,
Wallace
,
A. W.
,
Saloner
,
D. A.
, and
Ratcliffe
,
M. B.
, 2006, “
The Effect of Anteroapical Aneurysm Plication on End-Systolic Three-Dimensional Strain in the Sheep: A Magnetic Resonance Imaging Tagging Study
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
131
(
3
), pp.
579
586
.
2.
Walker
,
J. C.
,
Guccione
,
J. M.
,
Jiang
,
Y.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
, and
Ratcliffe
,
M. B.
, 2005, “
Helical Myofiber Orientation After Myocardial Infarction and Left Ventricular Surgical Restoration in Sheep
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
129
(
2
), pp.
382
390
.
3.
Costa
,
K. D.
,
Hunter
,
P. J.
,
Wayne
,
J. S.
,
Waldman
,
L. K.
,
Guccione
,
J. M.
, and
McCulloch
,
A. D.
, 1996, “
A Three-Dimensional Finite Element Method for Large Elastic Deformations of Ventricular Myocardium—II: Prolate Spheroidal Coordinates
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
4
), pp.
464
472
.
4.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Fata
,
B.
,
Hsu
,
E. W.
,
Saloner
,
D.
, and
Guccione
,
J. M.
, 2005, “
MRI-Based Finite-Element Analysis of Left Ventricular Aneurysm
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
(
2
), pp.
H692
H700
.
5.
Walker
,
J. C.
,
Ratcliffe
,
M. B.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Hsu
,
E. W.
,
Saloner
,
D. A.
, and
Guccione
,
J. M.
, 2008, “
Magnetic Resonance Imaging-Based Finite Element Stress Analysis After Linear Repair of Left Ventricular Aneurysm
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
135
(
5
), pp.
1094
1102
.
6.
Jan
,
K. M.
, 1985, “
Distribution of Myocardial Stress and Its Influence on Coronary Blood Flow
,”
J. Biomech.
0021-9290,
18
(
11
), pp.
815
820
.
7.
Sarnoff
,
S. J.
,
Braunwald
,
E.
,
Welch
,
G. H.
Jr.
,
Case
,
R. B.
,
Stainsby
,
W. N.
, and
Macruz
,
R.
, 1958, “
Hemodynamic Determinants of Oxygen Consumption of the Heart With Special Reference to the Tension-Time Index
,”
Am. J. Physiol.
0002-9513,
192
(
1
), pp.
148
156
.
8.
Yin
,
F. C.
, 1981, “
Ventricular Wall Stress
,”
Circ. Res.
0009-7330,
49
(
4
), pp.
829
842
.
9.
Grossman
,
W.
, 1980, “
Cardiac Hypertrophy: Useful Adaptation or Pathologic Process?
,”
Am. J. Med.
0002-9343,
69
(
4
), pp.
576
584
.
10.
Huisman
,
R. M.
,
Elzinga
,
G.
,
Westerhof
,
N.
, and
Sipkema
,
P.
, 1980, “
Measurement of Left Ventricular Wall Stress
,”
Cardiovasc. Res.
0008-6363,
14
(
3
), pp.
142
153
.
11.
Zhang
,
P.
,
Guccione
,
J. M.
,
Nicholas
,
S. I.
,
Walker
,
J. C.
,
Crawford
,
P. C.
,
Shamal
,
A.
,
Acevedo-Bolton
,
G.
,
Guttman
,
M. A.
,
Ozturk
,
C.
,
McVeigh
,
E. R.
,
Saloner
,
D. A.
,
Wallace
,
A. W.
, and
Ratcliffe
,
M. B.
, 2007, “
Endoventricular Patch Plasty for Dyskinetic Anteroapical Left Ventricular Aneurysm Increases Systolic Circumferential Shortening in Sheep
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
134
(
4
), pp.
1017
1024
.
12.
Markovitz
,
L. J.
,
Savage
,
E. B.
,
Ratcliffe
,
M. B.
,
Bavaria
,
J. E.
,
Kreiner
,
G.
,
Iozzo
,
R. V.
,
Hargrove
,
W. C.
, III
,
Bogen
,
D. K.
, and
Edmunds
,
L. H.
, Jr.
, 1989, “
Large Animal Model of Left Ventricular Aneurysm
,”
Ann. Thorac. Surg.
0003-4975,
48
(
6
), pp.
838
845
.
13.
Guttman
,
M. A.
,
Zerhouni
,
E. A.
, and
McVeigh
,
E. R.
, 1997, “
Analysis and Visualization of Cardiac Function From MR Images
,”
IEEE Comput. Graphics Appl.
0272-1716,
17
(
1
), pp.
30
38
.
14.
Ozturk
,
C.
, and
McVeigh
,
E. R.
, 2000, “
Four-Dimensional B-Spline Based Motion Analysis of Tagged MR Images: Introduction and In Vivo Validation
,”
Phys. Med. Biol.
0031-9155,
45
(
6
), pp.
1683
1702
.
15.
Moustakidis
,
P.
,
Maniar
,
H. S.
,
Cupps
,
B. P.
,
Absi
,
T.
,
Zheng
,
J.
,
Guccione
,
J. M.
,
Sundt
,
T. M.
, and
Pasque
,
M. K.
, 2002, “
Altered Left Ventricular Geometry Changes the Border Zone Temporal Distribution of Stress in an Experimental Model of Left Ventricular Aneurysm: A Finite Element Model Study
,”
Circulation
0009-7322,
106
(
12
), pp.
I168
I175
.
16.
Omens
,
J. H.
,
May
,
K. D.
, and
McCulloch
,
A. D.
, 1991, “
Transmural Distribution of Three-Dimensional Strain in the Isolated Arrested Canine Left Ventricle
,”
Am. J. Physiol.
0002-9513,
261
(
3
), Part 2, pp.
H918
H928
.
17.
Moonly
,
S.
, 2003,
Experimental and Computational Analysis of Left Ventricular Aneurysm Mechanics
,
University of California, San Francisco
,
San Francisco, CA
/
University of California, Berkeley
,
Berkeley, CA
.
18.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
1
), pp.
42
55
.
19.
Guccione
,
J. M.
,
Waldman
,
L. K.
, and
McCulloch
,
A. D.
, 1993, “
Mechanics of Active Contraction in Cardiac Muscle—Part II: Cylindrical Models of the Systolic Left Ventricle
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
1
), pp.
82
90
.
20.
Tozeren
,
A.
, 1985, “
Continuum Rheology of Muscle Contraction and Its Application to Cardiac Contractility
,”
Biophys. J.
0006-3495,
47
(
3
), pp.
303
309
.
21.
Guccione
,
J. M.
,
Costa
,
K. D.
, and
McCulloch
,
A. D.
, 1995, “
Finite Element Stress Analysis of Left Ventricular Mechanics in the Beating Dog Heart
,”
J. Biomech.
0021-9290,
28
(
10
), pp.
1167
1177
.
22.
Lin
,
D. H.
, and
Yin
,
F. C.
, 1998, “
A Multiaxial Constitutive Law for Mammalian Left Ventricular Myocardium in Steady-State Barium Contracture or Tetanus
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
4
), pp.
504
517
.
23.
Usyk
,
T. P.
,
Mazhari
,
R.
, and
McCulloch
,
A. D.
, 2000, “
Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle
,”
J. Elast.
0374-3535,
61
, pp.
143
164
.
24.
Stander
,
N.
,
Roux
,
W.
,
Eggleston
,
T.
, and
Craig
,
K.
, 2007, LS-OPT User’s Manual Version 3.3.
25.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology:Process and Product Optimization Using Design Experiments
,
Wiley
,
New York
.
26.
Declerck
,
J.
,
Denney
,
T. S.
,
Ozturk
,
C.
,
O’Dell
,
W.
, and
McVeigh
,
E. R.
, 2000, “
Left Ventricular Motion Reconstruction From Planar Tagged MR Images: A Comparison
,”
Phys. Med. Biol.
0031-9155,
45
(
6
), pp.
1611
1132
.
27.
Denney
,
T. S.
, Jr.
,
Gerber
,
B. L.
, and
Yan
,
L.
, 2003, “
Unsupervised Reconstruction of a Three-Dimensional Left Ventricular Strain From Parallel Tagged Cardiac Images
,”
Magn. Reson. Med.
0740-3194,
49
(
4
), pp.
743
754
.
28.
Snyman
,
J. A.
, 1982, “
A New and Dynamic Method for Unconstrained Minimization
,”
Appl. Math. Model.
0307-904X,
6
, pp.
449
462
.
29.
Snyman
,
J. A.
, 1983, “
An Improved Version of the Original Leap-Frog Dynamic Method for Unconstrained Minimization: LFOP1(b)
,”
Appl. Math. Model.
0307-904X,
7
(
3
), pp.
216
218
.
30.
Snyman
,
J. A.
, 2000, “
The LFOPC Leap-Frog Algorithm for Constrained Optimization
,”
Comput. Math. Appl.
0898-1221,
40
(
8–9
), pp.
1085
1096
.
31.
Roux
,
W.
,
Stander
,
N.
, and
Haftka
,
R. T.
, 1998, “
Response Surface Approximations for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
517
534
.
32.
Moulton
,
M. J.
,
Creswell
,
L. L.
,
Downing
,
S. W.
,
Actis
,
R. L.
,
Szabo
,
B. A.
, and
Pasque
,
M. K.
, 1996, “
Myocardial Material Property Determination in the In Vivo Heart Using Magnetic Resonance Imaging
,”
Int. J. Card. Imaging
0167-9899,
12
(
3
), pp.
153
167
.
33.
Okamoto
,
R. J.
,
Moulton
,
M. J.
,
Peterson
,
S. J.
,
Li
,
D.
,
Pasque
,
M. K.
, and
Guccione
,
J. M.
, 2000, “
Epicardial Suction: A New Approach to Mechanical Testing of the Passive Ventricular Wall
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
5
), pp.
479
487
.
34.
Guccione
,
J. M.
,
Moonly
,
S. M.
,
Moustakidis
,
P.
,
Costa
,
K. D.
,
Moulton
,
M. J.
,
Ratcliffe
,
M. B.
, and
Pasque
,
M. K.
, 2001, “
Mechanism Underlying Mechanical Dysfunction in the Border Zone of Left Ventricular Aneurysm: A Finite Element Model Study
,”
Ann. Thorac. Surg.
0003-4975,
71
(
2
), pp.
654
662
.
35.
Nair
,
A. U.
,
Taggart
,
D. G.
, and
Vetter
,
F. J.
, 2007, “
Optimizing Cardiac Material Parameters With a Genetic Algorithm
,”
J. Biomech.
0021-9290,
40
(
7
), pp.
1646
1650
.
36.
Remme
,
E. W.
,
Hunter
,
P. J.
,
Smiseth
,
O.
,
Stevens
,
C.
,
Rabben
,
S. I.
,
Skulstad
,
H.
, and
Angelsen
,
B. B.
, 2004, “
Development of an In Vivo Method for Determining Material Properties of Passive Myocardium
,”
J. Biomech.
0021-9290,
37
(
5
), pp.
669
678
.
37.
Augenstein
,
K. F.
,
Cowan
,
B. R.
,
LeGrice
,
I. J.
,
Nielsen
,
P. M.
, and
Young
,
A. A.
, 2005, “
Method and Apparatus for Soft Tissue Material Parameter Estimation Using Tissue Tagged Magnetic Resonance Imaging
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
148
157
.
38.
Augenstein
,
K. F.
,
Cowan
,
B. R.
,
LeGrice
,
I. J.
, and
Young
,
A. A.
, 2006, “
Estimation of Cardiac Hyperelastic Material Properties From MRI Tissue Tagging and Diffusion Tensor Imaging
,”
Lect. Notes Comput. Sci.
0302-9743, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006,
4190/2006
, pp.
628
635
.
39.
Einstein
,
D. R.
,
Freed
,
A. D.
,
Stander
,
N.
,
Fata
,
B.
, and
Vesely
,
I.
, 2005, “
Inverse Parameter Fitting of Biological Tissue: A Response Surface Approach
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1819
1830
.
40.
Chen
,
K.
,
Fata
,
B.
, and
Einstein
,
D. R.
, 2008, “
Characterization of the Highly Nonlinear and Anisotropic Vascular Tissues From Experimental Inflation Data: A Validation Study Toward the Use of Clinical Data for In-Vivo Modeling and Analysis
,”
Ann. Biomed. Eng.
0090-6964,
36
(
10
), pp.
1668
1680
.
41.
Stander
,
N.
, and
Craig
,
K.
, 2002, “
On the Robustness of a Simple Domain Reduction Scheme for Simulation-Based Optimization
,”
Eng. Comput.
0264-4401,
19
(
4
), pp.
431
450
.
42.
Guccione
,
J. M.
,
Moonly
,
S. M.
,
Wallace
,
A. W.
, and
Ratcliffe
,
M. B.
, 2001, “
Residual Stress Produced by Ventricular Volume Reduction Surgery Has Little Effect on Ventricular Function and Mechanics: A Finite Element Model Study
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
122
(
3
), pp.
592
599
.
43.
LeGrice
,
I. J.
,
Smaill
,
B. H.
,
Chai
,
L. Z.
,
Edgar
,
S. G.
,
Gavin
,
J. B.
, and
Hunter
,
P. J.
, 1995, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol.
0002-9513,
269
(
2 Pt 2
), pp.
H571
H582
.
44.
LeGrice
,
I. J.
,
Hunter
,
P. J.
,
Young
,
A. A.
, and
Smaill
,
B. H.
, 2001, “
The Architecture of the Heart: A Data-Based Model
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
1217
1232
.
You do not currently have access to this content.