Intervertebral disk degeneration results in alterations in the mechanical, chemical, and electrical properties of the disk tissue. The purpose of this study is to record spatially resolved streaming potential measurements across intervertebral disks exposed to cyclic compressive loading. We hypothesize that the streaming potential profile across the disk will vary with radial position and frequency and is proportional to applied load amplitude, according to the presumed fluid-solid relative velocity and measured glycosaminoglycan content. Needle electrodes were fabricated using a linear array of AgAgCl micro-electrodes and inserted into human motion segments in the midline from anterior to posterior. They were connected to an amplifier to measure electrode potentials relative to the saline bath ground. Motion segments were loaded in axial compression under a preload of 500N, sinusoidal amplitudes of ±200N and ±400N, and frequencies of 0.01Hz, 0.1Hz, and 1Hz. Streaming potential data were normalized by applied force amplitude, and also compared with paired experimental measurements of glycosaminoglycans in each disk. Normalized streaming potentials varied significantly with sagittal position and there was a significant location difference at the different frequencies. Normalized streaming potential was largest in the central nucleus region at frequencies of 0.1Hz and 1.0Hz with values of approximately 3.5μVN. Under 0.01Hz loading, normalized streaming potential was largest in the outer annulus regions with a maximum value of 3.0μVN. Correlations between streaming potential and glycosaminoglycan content were significant, with R2 ranging from 0.5 to 0.8. Phasic relationships between applied force and electrical potential did not differ significantly by disk region or frequency, although the largest phase angles were observed at the outermost electrodes. Normalized streaming potentials were associated with glycosaminoglycan content, fluid, and ion transport. Results suggested that at higher frequencies the transport of water and ions in the central nucleus region may be larger, while at lower frequencies there is enhanced transport near the periphery of the annulus. This study provides data that will be helpful to validate multiphasic models of the disk.

1.
Stokes
,
I. A. F.
, and
Iatridis
,
J. C.
, 2004, “
Biomechanics of the spine
,”
Basic Orthopaedic Biomechanics and Mechano-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott, Williams, & Wilkins
,
New York
.
2.
Adams
,
M. A.
, and
Roughley
,
P. J.
, 2006, “
What is Intervertebral Disc Degeneration, and What Causes It?
,”
Spine
0362-2436,
31
(
18
), pp.
2151
2161
.
3.
Setton
,
L. A.
, and
Chen
,
J.
, 2006, “
Mechanobiology of the Intervertebral Disc and Relevance to Disc Degeneration
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
88
(
2
), pp.
52
57
.
4.
Binette
,
J. S.
,
Garon
,
M.
,
Savard
,
P.
,
McKee
,
M. D.
, and
Buschmann
,
M. D.
, 2004, “
Tetrapolar Measurement of Electrical Conductivity and Thickness of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
4
), pp.
475
484
.
5.
Chen
,
A. C.
,
Nguyen
,
T. T.
, and
Sah
,
R. L.
, 1997, “
Streaming Potentials During the Confined Compression Creep Test of Normal and Proteoglycan-Depleted Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
25
(
2
), pp.
269
277
.
6.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
, 1995, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1055
1066
.
7.
Sachs
,
J. R.
, and
Grodzinsky
,
A. J.
, 1995, “
Electromechanical Spectroscopy of Cartilage Using a Surface Probe With Applied Mechanical Displacement
,”
J. Biomech.
0021-9290,
28
(
8
), pp.
963
976
.
8.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
6
16
.
9.
Garon
,
M.
,
Legare
,
A.
,
Guardo
,
R.
,
Savard
,
P.
, and
Buschmann
,
M. D.
, 2002, “
Streaming Potentials Maps are Spatially Resolved Indicators of Amplitude, Frequency and Ionic Strength Dependant Responses of Articular Cartilage to Load
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
207
216
.
10.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Rawlins
,
B. A.
,
Iatridis
,
J. C.
,
Foster
,
R. J.
,
Sun
,
D. N.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1999, “
Streaming Potential of Human Lumbar Annulus Fibrosus is Anisotropic and Affected by Disc Degeneration
,”
J. Biomech.
0021-9290,
32
(
11
), pp.
1177
1182
.
11.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1993, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
0021-9290,
26
(
6
), pp.
709
723
.
12.
Iatridis
,
J. C.
,
Laible
,
J. P.
, and
Krag
,
M. H.
, 2003, “
Influence of Fixed Charge Density Magnitude and Distribution on the Intervertebral Disc: Applications of a Poroelastic and Chemical Electric (PEACE) Model
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
12
24
.
13.
Yao
,
H.
, and
Gu
,
W. Y.
, 2007, “
Three-Dimensional Inhomogeneous Triphasic Finite-Element Analysis of Physical Signals and Solute Transport in Human Intervertebral Disc Under Axial Compression
,”
J. Biomech.
0021-9290,
40
(
9
), pp.
2071
2077
.
14.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
, 1999, “
The Anisotropic Hydraulic Permeability of Human Lumbar Annulus Fibrosus. Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
0362-2436,
24
(
23
), pp.
2449
2455
.
15.
Iatridis
,
J. C.
,
MacLean
,
J. J.
,
O’Brien
,
M.
, and
Stokes
,
I. A.
, 2007, “
Measurements of Proteoglycan and Water Content Distribution in Human Lumbar Intervertebral Discs
,”
Spine
0362-2436,
32
(
14
), pp.
1493
1497
.
16.
Urban
,
J. P.
, and
McMullin
,
J. F.
, 1988, “
Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration
,”
Spine
0362-2436,
13
(
2
), pp.
179
187
.
17.
Baker
,
L. E.
, and
Geddes
,
L. A.
, 1969,
Principles of Applied Biomedical Instrumentation
,
Wiley
,
New York
.
18.
Thompson
,
J. P.
,
Pearce
,
R. H.
,
Schechter
,
M. T.
,
Adams
,
M. E.
,
Tsang
,
I. K.
, and
Bishop
,
P. B.
, 1990, “
Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc
,”
Spine
0362-2436,
15
(
5
), pp.
411
415
.
19.
Schroeder
,
Y.
,
Sivan
,
S.
,
Wilson
,
W.
,
Merkher
,
Y.
,
Huyghe
,
J. M.
,
Maroudas
,
A.
, and
Baaijens
,
F. P.
, 2007, “
Are Disc Pressure, Stress, and Osmolarity Affected by Intra- and Extrafibrillar Fluid Exchange?
,”
J. Orthop. Res.
0736-0266,
25
(
10
), pp.
1317
1324
.
20.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. P.
, 2004, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
213
221
.
21.
Haughton
,
V.
, 2006, “
Imaging Intervertebral Disc Degeneration
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
88
(
2
), pp.
15
20
.
22.
Perry
,
J.
,
Haughton
,
V.
,
Anderson
,
P. A.
,
Wu
,
Y.
,
Fine
,
J.
, and
Mistretta
,
C.
, 2006, “
The Value of T2 Relaxation Times to Characterize Lumbar Intervertebral Disks: Preliminary Results
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
(
2
), pp.
337
342
.
23.
Urban
,
J. P. G.
, and
Maroudas
,
A.
, 1979, “
The Measurement of Fixed Charge Density in the Intervertebral Disc
,”
Biochim. Biophys. Acta
0006-3002,
586
, pp.
166
178
.
24.
Masuoka
,
K.
,
Michalek
,
A. J.
,
MacLean
,
J. J.
,
Stokes
,
I. A. F.
, and
Iatridis
,
J. C.
, 2007, “
Different Effects of Static Versus Cyclic Compressive Loading on Rat Intervertebral Disc Height and Water Loss In Vitro
,”
Spine
0362-2436,
32
(
18
), pp.
1974
1979
.
25.
Gantenbein
,
B.
,
Grunhagen
,
T.
,
Lee
,
C. R.
,
van Donkelaar
,
C. C.
,
Alini
,
M.
, and
Ito
,
K.
, 2006, “
An In Vitro Organ Culturing System for Intervertebral Disc Explants With Vertebral Endplates: A Feasibility Study With Ovine Caudal Discs
,”
Spine
0362-2436,
31
(
23
), pp.
2665
2673
.
26.
van der Veen
,
A. J.
,
van Dieen
,
J. H.
,
Nadort
,
A.
,
Stam
,
B.
, and
Smit
,
T. H.
, 2007, “
Intervertebral Disc Recovery After Dynamic or Static Loading In Vitro: Is There a Role for the Endplate?
,”
J. Biomech.
0021-9290,
40
(
10
), pp.
2230
2235
.
27.
MacLean
,
J. J.
,
Owen
,
J. P.
, and
Iatridis
,
J. C.
, 2007, “
Role of Endplates in Contributing to Compression Behaviors of Motion Segments and Intervertebral Discs
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
55
63
.
28.
Lee
,
C. R.
,
Iatridis
,
J. C.
,
Poveda
,
L.
, and
Alini
,
M.
, 2006, “
In Vitro Organ Culture of the Bovine Intervertebral Disc: Effects of Vertebral Endplate and Potential for Mechanobiology Studies
,”
Spine
0362-2436,
31
(
5
), pp.
515
522
.
You do not currently have access to this content.