Though it is widely accepted that fiber alignment has a great influence on the mechanical anisotropy of tissues, a systematic study of the influence of fiber alignment on the macroscopic mechanical behavior by native tissues is precluded due to their predefined microstructure and heterogeneity. Such a study is possible using collagen-based bioartificial tissues that allow for alignment to be prescribed during their fabrication. To generate a systemic variation of strength of fiber alignment, we made cruciform tissue constructs in Teflon molds that had arms of different aspect ratios. We implemented our anisotropic biphasic theory of tissue-equivalent mechanics to simulate the compaction by finite element analysis. Prior to tensile testing, the construct geometry was standardized by cutting test samples with a 1:1 cruciform punch after releasing constructs from the molds. Planar biaxial testing was performed on these samples, after stretching them to their in-mold dimensions to recover in-mold alignment, to observe the macroscopic mechanical response with simultaneous fiber alignment imaging using a polarimetry system. We found that the strength of fiber alignment of the samples prior to release from the molds linearly increased with anisotropy of the mold. In testing after release, modulus ratio (modulus in fiber direction/modulus in normal direction) was greater as the initial strength of fiber alignment increased, that is, as the aspect ratio increased. We also found that the fiber alignment strength and modulus ratio increased in a hyperbolic fashion with stretching for a sample of given aspect ratio.

1.
Guilak
,
F.
, 2003,
Functional Tissue Engineering
,
Springer
,
New York
.
2.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
3.
Grieve
,
D. J.
,
Byrne
,
J. A.
,
Cave
,
A. C.
, and
Shah
,
A. M.
, 2004, “
Role of Oxidative Stress in Cardiac Remodelling After Myocardial Infarction
,”
Heart, Lung and Circulation
,
13
(
2
), pp.
132
138
. 1443-9506
4.
Harris
,
J. L.
, and
Humphrey
,
J. D.
, 2004, “
Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading
,”
IEEE Trans. Biomed. Eng.
0018-9294,
51
(
2
), pp.
371
379
.
5.
Harris
,
J. L.
,
Wells
,
P. B.
, and
Humphrey
,
J. D.
, 2003, “
Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
381
388
.
6.
Woo
,
S. L.
,
Abramowitch
,
S. D.
,
Kilger
,
R.
, and
Liang
,
R.
, 2006, “
Biomechanics of Knee Ligaments: Injury, Healing, and Repair
,”
J. Biomech.
0021-9290,
39
(
1
), pp.
1
20
.
7.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
8.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
, 2005, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
905
914
.
9.
Billiar
,
K. L.
,
Throm
,
A. M.
, and
Frey
,
M. T.
, 2005, “
Biaxial Failure Properties of Planar Living Tissue Equivalents
,”
J. Biomed. Mater. Res. Part A
1549-3296,
73A
(
2
), pp.
182
191
.
10.
Thomopoulos
,
S.
,
Fomovsky
,
G. M.
,
Chandran
,
P. L.
, and
Holmes
,
J. W.
, 2007, “
Collagen Fiber Alignment Does not Explain Mechanical Anisotropy in Fibroblast Populated Collagen Gels
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
642
650
.
11.
Thomopoulos
,
S.
,
Fomovsky
,
G. M.
, and
Holmes
,
J. W.
, 2005, “
The Development of Structural and Mechanical Anisotropy in Fibroblast Populated Collagen Gels
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
742
750
.
12.
Wagenseil
,
J. E.
,
Elson
,
E. L.
, and
Okamoto
,
R. J.
, 2004, “
Cell Orientation Influences the Biaxial Mechanical Properties of Fibroblast Populated Collagen Vessels
,”
Ann. Biomed. Eng.
0090-6964,
32
(
5
), pp.
720
731
.
13.
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
, 2006, “
Tissue-Engineered Valves With Commissural Alignment
,”
Tissue Eng.
1076-3279,
12
, pp.
891
903
.
14.
Barocas
,
V. H.
,
Girton
,
T. S.
, and
Tranquillo
,
R. T.
, 1998, “
Engineered Alignment in Media-Equivalents: Magnetic Prealignment and Mandrel Compaction
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
5
), pp.
660
666
.
15.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 1997, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
2
), pp.
137
145
.
16.
Ohsumi
,
T. K.
,
Flaherty
,
J. E.
,
Evans
,
M. C.
, and
Barocas
,
V. H.
, 2008, “
Three-Dimensional Simulation of Anisotropic Cell-Driven Collagen Gel Compaction
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
1
), pp.
53
62
.
17.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
, 2002, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
0090-6964,
30
(
10
), pp.
1221
1233
.
18.
Tower
,
T. T.
, and
Tranquillo
,
R. T.
, 2001, “
Alignment Maps of Tissues: II. Fast Harmonic Analysis for Imaging
,”
Biophys. J.
0006-3495,
81
(
5
), pp.
2964
2971
.
19.
Tower
,
T. T.
, and
Tranquillo
,
R. T.
, 2001, “
Alignment Maps of Tissues: I. Microscopic Elliptical Polarimetry
,”
Biophys. J.
0006-3495,
81
(
5
), pp.
2954
2963
.
20.
Hecht
,
E.
, 2002,
Optics
,
Addison-Wesley
,
Reading, MA
.
21.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
23
30
.
22.
Sacks
,
M. S.
, and
Sun
,
W.
, 2003, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
251
284
.
23.
Sun
,
W.
,
Sacks
,
M.
,
Fulchiero
,
G.
,
Lovekamp
,
J.
,
Vyavahare
,
N.
, and
Scott
,
M.
, 2004, “
Response of Heterograft Heart Valve Biomaterials to Moderate Cyclic Loading
,”
J. Biomed. Mater. Res. Part A
1549-3296,
69A
(
4
), pp.
658
669
.
24.
Thie
,
M.
,
Schlumberger
,
W.
,
Semich
,
R.
,
Rauterberg
,
J.
, and
Robenek
,
H.
, 1991, “
Aortic Smooth Muscle Cells in Collagen Lattice Culture: Effects on Ultrastructure, Proliferation and Collagen Synthesis
,”
Eur. J. Cell Biol.
0171-9335,
55
(
2
), pp.
295
304
.
25.
Clark
,
R. A.
,
Nielsen
,
L. D.
,
Welch
,
M. P.
, and
McPherson
,
J. M.
, 1995, “
Collagen Matrices Attenuate the Collagen-Synthetic Response of Cultured Fibroblasts to TGF-Beta
,”
J. Cell Sci.
,
108
(
3
), pp.
1251
1261
. 0021-9533
26.
Guido
,
S.
, and
Tranquillo
,
R. T.
, 1993, “
A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Collagen Gels: Correlation of Fibroblast Orientation and Gel Birefringence
,”
J. Cell Sci.
,
105
, pp.
317
331
. 0021-9533
27.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
, 2009, “
Image-Based Biomechanics of Collagen-Based Tissue Equivalents: Multiscale Models Compared to Quantitative Polarized Light Microscopy
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
28
(
3
), pp.
10
18
.
28.
Holzapfel
,
G. A.
, 2006, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure
,”
J. Theor. Biol.
0022-5193,
238
(
2
), pp.
290
302
.
29.
Robinson
,
P. S.
,
Johnson
,
S. L.
,
Evans
,
M. C.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 2008, “
Functional Tissue-Engineered Valves From Cell-Remodeled Fibrin With Commissural Alignment of Cell-Produced Collagen
,”
Tissue Engineering Part A
,
14
(
1
), pp.
83
95
. 1937-3341
You do not currently have access to this content.