Abdominal aortic aneurysm (AAA) is the gradual weakening and dilation of the infrarenal aorta. This disease is progressive, asymptomatic, and can eventually lead to rupture—a catastrophic event leading to massive internal bleeding and possibly death. The mechanical environment present in AAA is currently thought to be important in disease initiation, progression, and diagnosis. In this study, we utilize porohyperelastic (PHE) finite element models (FEMs) to investigate how such modeling can be used to better understand the local biomechanical environment in AAA. A 3D hypothetical AAA was constructed with a preferential anterior bulge assuming both the intraluminal thrombus (ILT) and the AAA wall act as porous materials. A parametric study was performed to investigate how physiologically meaningful variations in AAA wall and ILT hydraulic permeabilities affect luminal interstitial fluid velocities and wall stresses within an AAA. A corresponding hyperelastic (HE) simulation was also run in order to be able to compare stress values between PHE and HE simulations. The effect of AAA size on local interstitial fluid velocity was also investigated by simulating maximum diameters (5.5 cm, 4.5 cm, and 3.5 cm) at the baseline values of ILT and AAA wall permeability. Finally, a cyclic PHE simulation was utilized to study the variation in local fluid velocities as a result of a physiologic pulsatile blood pressure. While the ILT hydraulic permeability was found to have minimal affect on interstitial velocities, our simulations demonstrated a 28% increase and a 20% decrease in luminal interstitial fluid velocity as a result of a 1 standard deviation increase and decrease in AAA wall hydraulic permeability, respectively. Peak interstitial velocities in all simulations occurred on the luminal surface adjacent to the region of maximum diameter. These values increased with increasing AAA size. PHE simulations resulted in 19.4%, 40.1%, and 81.0% increases in peak maximum principal wall stresses in comparison to HE simulations for maximum diameters of 35 mm, 45 mm, and 55 mm, respectively. The pulsatile AAA PHE FEM demonstrated a complex interstitial fluid velocity field the direction of which alternated in to and out of the luminal layer of the ILT. The biomechanical environment within both the aneurysmal wall and the ILT is involved in AAA pathogenesis and rupture. Assuming these tissues to be porohyperelastic materials may provide additional insight into the complex solid and fluid forces acting on the cells responsible for aneurysmal remodeling and weakening.

1.
Vande Geest
,
J. P.
,
Wang
,
H. J.
,
Wisniewski
,
S. R.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
Toward a Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
34
(
7
), pp.
1098
1106
.
2.
Hsiang
,
Y. N.
,
Turnbull
,
R. G.
,
Nicholls
,
S. C.
,
McCollough
,
K.
,
Chen
,
J. C.
,
Lokanathan
,
R.
, and
Taylor
,
D. C.
, 2001, “
Predicting Death From Ruptured Abdominal Aortic Aneurysms
,”
Am. J. Surg.
0002-9610,
181
, pp.
30
35
.
3.
Batty
,
R.
,
Hammond
,
C. J.
, and
McPherson
,
S. J.
, 2004, “
Stent-Grafting for Thoracic and Abdominal Aneurysms:Imaging, Assessment and Follow-Up
,”
Imaging
,
16
, pp.
240
252
.
4.
Swedenborg
,
J.
, and
Eriksson
,
P.
, 2006, “
The Intraluminal Thrombus as a Source of Proteolytic Activity
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1085
, pp.
133
138
.
5.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability
,”
J. Biomech.
0021-9290,
33
(
4
), pp.
475
482
.
6.
Mower
,
W. R.
,
Baraff
,
L. J.
, and
Sneyd
,
J.
, 1993, “
Stress Distribution in Vascular Aneurysms: Factors Affecting Risk of Rupture
,”
J. Surg. Res.
0022-4804,
55
, pp.
155
161
.
7.
Stringefellow
,
M. M.
,
Lawrence
,
P. F.
, and
Stringefellow
,
R. G.
, 1987, “
The Influence of Aorto-Aneurysm Geometry Upon Stress in the Aneurysm Wall
,”
J. Surg. Res.
0022-4804,
42
(
4
), pp.
425
433
.
8.
Inzoli
,
F.
,
Boschetti
,
F.
,
Zappa
,
M.
,
Longo
,
T.
, and
Fumero
,
R.
, 1993, “
Biomechanical Factors in Abdominal Aortic Aneurysm Rupture
,”
Eur. J. Vasc. Surg.
0950-821X,
7
, pp.
667
674
.
9.
Doyle
,
B. J.
,
Callanan
,
A.
,
Burke
,
P. E.
,
Grace
,
P. A.
,
Walsh
,
M. T.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2009, “
Vessel Asymmetry as an Additional Diagnostic Tool in the Assessment of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
49
(
2
), pp.
443
454
.
10.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
, 2003, “
Effect of Variation of Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
804
809
.
11.
Rissland
,
P.
,
Alemu
,
Y.
,
Einav
,
S.
,
Ricotta
,
J.
, and
Bluestein
,
D.
, 2009, “
Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
3
) p.
031001
.
12.
Vorp
,
D. A.
, 2007, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
0021-9290,
40
(
9
), pp.
1887
1902
.
13.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
, 2005, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
(
8
), pp.
1558
1566
.
14.
Koshiba
,
N.
,
Ando
,
J.
,
Chen
,
X.
, and
Hisada
,
T.
, 2007, “
Multiphysics of Blood Flow and LDL Transport in a Porohyperelastic Arterial Wall Model
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
374
385
.
15.
Simon
,
B. R.
,
Kaufman
,
M. V.
,
Liu
,
J. V.
, and
Baldwin
,
A. L.
, 1998, “
Porohyperelastic-Transport-Swelling Theory, Material Properties, and Finite Element Models for Large Arteries
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
5021
5031
.
16.
Feenstra
,
P. H.
, and
Taylor
,
C. A.
, 2009, “
Drug Transport in Artery Walls: A Sequential Porohyperelastic-Transport Approach
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
3
), pp.
263
276
.
17.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models—1995–2002
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
413
439
.
18.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
, 2002, “
Coupled Computational Analysis of Arterial LDL Transport—Effects of Hypertension
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
(
3
), pp.
233
241
.
19.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
, and
Baldwin
,
A. L.
, 1993, “
Finite Element Models for Arterial Wall Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
489
496
.
20.
Adolph
,
R.
,
Vorp
,
D. A.
,
Steed
,
D. L.
,
Webster
,
M.
,
Kameneva
,
M.
, and
Watkins
,
S.
, 1997, “
Cellular Content and Permeability of Intraluminal Thrombus in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
25
, pp.
916
926
.
21.
Wang
,
H. J.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2001,
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
536
539
.
22.
Gasser
,
C.
,
Gorgulu
,
G.
,
Folkesson
,
M.
, and
Swedenborg
,
J.
, 2008, “
Failure Properties of Intraluminal Thrombus in Abdominal Aortic Aneurysm Under Static and Pulsating Mechanical Loads
,”
J. Vasc. Surg.
0741-5214,
48
(
1
), pp.
179
188
.
23.
Kazi
,
M.
,
Thyberg
,
J.
,
Religa
,
P.
,
Roy
,
J.
,
Eriksson
,
P.
,
Hedin
,
U.
, and
Swedenborg
,
J.
, 2003, “
Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall
,”
J. Vasc. Surg.
0741-5214,
38
, pp.
1283
1292
.
24.
Vorp
,
D. A.
,
Wang
,
D. H. J.
,
Webster
,
M. W.
, and
Federspiel
,
W. J.
, 1998, “
Effect of Intraluminal Thrombus Thickness and Bulge Diameter on the Oxygen Diffusion in Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
579
583
.
25.
Vande Geest
,
J. P.
,
Schmidt
,
D. E.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2008, “
The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
36
(
6
), pp.
921
932
.
26.
Wang
,
H. J.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2002, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
36
, pp.
598
604
.
27.
Baxter
,
B. T.
,
Terrin
,
M. C.
, and
Dalman
,
R. L.
, 2008, “
Medical Management of Small Abdominal Aortic Aneurysms
,”
Circulation
0009-7322,
117
(
14
), pp.
1883
1889
.
28.
Petrinec
,
D.
,
Holmes
,
D. R.
,
Liao
,
S.
,
Golub
,
L. M.
, and
Thompson
,
R. W.
, 1996, “
Suppression of Experimental Aneurysmal Degeneration With Chemically Modified Tetracycline
,”
Ann. N.Y. Acad. Sci.
0077-8923,
800
, pp.
263
265
.
29.
Dassault Systèmes
, 2008, ABAQUS Theory Manual Version 6.9.
30.
Newberg
,
T.
, 2006, “
A Porohyperelastic Finite Element Model of Arterial Transport Using ABAQUSCAE
,” Ph.D. thesis, University of Arizona, Tucson, AZ.
31.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms
,”
J. Biomech.
0021-9290,
39
, pp.
2347
2354
.
32.
Vorp
,
D. A.
,
Amon
,
C. H.
,
Finol
,
E. A.
, and
Di Martino
,
E. S.
, 2003, “
Fluid-Structure Interaction and Structural Analyses of an Aneurysm Model
,”
Summer Bioengineering Conference
, Key Biscayne, FL.
33.
Bluestein
,
D.
,
Dumont
,
K.
,
De Beule
,
M.
,
Ricotta
,
J.
,
Impellizzeri
,
P.
,
Verhegghe
,
B.
, and
Verdonck
,
P.
, 2009, “
Intraluminal Thrombus and Risk of Rupture in Patient Specific Abdominal Aortic Aneurysm—FSI Modelling
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
1
), pp.
73
81
.
34.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
, 2004, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Rupture and Non-Ruptured Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
0890-5096,
28
, pp.
168
176
.
35.
Yang
,
J. H.
,
Sakamoto
,
H.
,
Xu
,
E. C.
, and
Lee
,
R. T.
, 2000, “
Biomechanical Regulation of Human Monocyte/Macrophage Molecular Function
,”
Am. J. Pathol.
0002-9440,
156
(
5
), pp.
1797
1804
.
36.
Leung
,
D. Y.
,
Glagov
,
S.
, and
Mathews
,
M. B.
, 1976, “
Cyclic Stretching Stimulates Synthesis of Matrix Components by Arterial Smooth Muscle Cells in Vitro
,”
Science
0036-8075,
191
(
4226
), pp.
475
477
.
37.
Gorfien
,
S. F.
,
Winston
,
F. K.
,
Thibault
,
L. E.
, and
Macarak
,
E. J.
, 1989, “
Effects of Biaxial Deformation on Pulmonary Artery Endothelial Cells
,”
J. Cell Physiol.
0021-9541,
139
(
3
), pp.
492
500
.
38.
Sumpio
,
B. E.
,
Banes
,
A. J.
,
Link
,
G. W.
, and
Iba
,
T.
, 1990, “
Modulation of Endothelial Cell Phenotype by Cyclic Stretch: Inhibition of Collagen Production
,”
J. Surg. Res.
0022-4804,
48
(
5
), pp.
415
420
.
39.
Asanuma
,
K.
,
Magid
,
R.
, and
Johnson
,
C.
, 2003, “
Uniaxial Strain Upregulates Matrix-Degrading Enzymes Produced by Human Vascular Smooth Muscle Cells
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
284
(
5
), pp.
1778
1784
.
40.
Zatina
,
M. A.
,
Zarins
,
C. K.
,
Gewertz
,
B. L.
, and
Glagov
,
S.
, 1984, “
Role of Medial Lamellar Architecture in the Pathogenesis of Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
1
, pp.
442
448
.
You do not currently have access to this content.