We use simple walking models, based on mechanical principles, to study the preferred strategy selection in human stumble recovery. Humans typically apply an elevating strategy in response to a stumble in early swing and midswing, for which the perturbed step is lengthened in a continuation of the original step. A lowering strategy is executed for stumbles occurring at midswing or late swing, for which the perturbed swing foot is immediately placed on the ground and the recovery is executed in the subsequent step. There is no clear understanding of why either strategy is preferred over the other. We hypothesize that the human strategy preference is the result of an attempt to minimize the cost of successful recovery. We evaluate five hypothesized measures for recovery cost, focusing on the energetic cost of active recovery limb placement. We determine all hypothesized cost measures as a function of the chosen recovery strategy and the timing of the stumble during gait. Minimization of the cost measures based on the required torque, impulse, power and torque/time results in a humanlike strategy preference. The cost measure based on swing work does not predict a favorable strategy as a function of the gait phase.

1.
Dietz
,
V.
,
Quintern
,
J.
,
Boos
,
G.
, and
Berger
,
W.
, 1986, “
Obstruction of the Swing Phase During Gait: Phase-Dependent Bilateral Leg Muscle Coordination
,”
Brain Res.
0006-8993,
384
(
1
), pp.
166
169
.
2.
Grabiner
,
M.
,
Koh
,
T.
,
Lundin
,
T.
, and
Jahnigen
,
D.
, 1993, “
Kinematics of Recovery From a Stumble
,”
J. Gerontol.
0022-1422,
48
(
3
), pp.
M97
102
.
3.
Eng
,
J.
,
Winter
,
D.
, and
Patla
,
A.
, 1994, “
Strategies for Recovery From a Trip in Early and Late Swing During Human Walking
,”
Exp. Brain Res.
0014-4819,
102
(
2
), pp.
339
349
.
4.
Schillings
,
A.
,
Van Wezel
,
B.
, and
Duysens
,
J.
, 1996, “
Mechanically Induced Stumbling During Human Treadmill Walking
,”
J. Neurosci. Methods
0165-0270,
67
(
1
), pp.
11
17
.
5.
Forner Cordero
,
A.
,
Koopman
,
H.
, and
van der Helm
,
F.
, 2003, “
Multiple-Step Strategies to Recover From Stumbling Perturbations
,”
Gait and Posture
0966-6362,
18
(
1
), pp.
47
59
.
6.
Schillings
,
A.
,
Van Wezel
,
B.
,
Mulder
,
T.
, and
Duysens
,
J.
, 1999, “
Widespread Short Latency Stretch Reflexes and Their Modulation During Stumbling Over Obstacles
,”
Brain Res.
0006-8993,
816
(
2
), pp.
480
486
.
7.
Pavol
,
M.
,
Owings
,
T.
,
Foley
,
K.
, and
Grabiner
,
M.
, 2001, “
Mechanisms Leading to a Fall From an Induced Trip in Healthy Older Adults
,”
J. Gerontol., Ser. A
1079-5006,
56
(
7
), pp.
M428
437
.
8.
Schillings
,
A.
,
van Wezel
,
B.
,
Mulder
,
T.
, and
Duysens
,
J.
, 2000, “
Muscular Responses and Movement Strategies During Stumbling Over Obstacles
,”
J. Neurophysiol.
0022-3077,
83
(
4
), pp.
2093
2102
.
9.
Forner Cordero
,
A.
,
Koopman
,
H.
, and
van der Helm
,
F.
, 2005, “
Energy Analysis of Human Stumbling: The Limitations of Recovery
,”
Gait and Posture
0966-6362,
21
, pp.
243
254
.
10.
Weerdesteyn
,
V.
,
Nienhuis
,
B.
,
Mulder
,
T.
, and
Duysens
,
J.
, 2005, “
Older Women Strongly Prefer Stride Lengthening to Shortening in Avoiding Obstacles
,”
Exp. Brain Res.
0014-4819,
161
(
1
), pp.
39
46
.
11.
Roos
,
P.
,
McGuigan
,
M. P.
,
Kerwin
,
D.
, and
Trewartha
,
G.
, 2008, “
The Role of Arm Movement in Early Trip Recovery in Younger and Older Adults
,”
Gait and Posture
0966-6362,
27
(
2
), pp.
352
356
.
12.
van der Burg
,
J.
,
Pijnappels
,
M.
, and
van Dieën
,
J.
, 2005, “
Out-of-Plane Trunk Movements and Trunk Muscle Activity After a Trip During Walking
,”
Exp. Brain Res.
0014-4819,
165
(
3
), pp.
407
412
.
13.
Pijnappels
,
M.
,
Bobbert
,
M.
, and
van Dieën
,
J.
, 2004, “
Contribution of the Support Limb in Control of Angular Momentum After Tripping
,”
J. Biomech.
0021-9290,
37
(
12
), pp.
1811
1818
.
14.
Maki
,
B.
, and
Mcllroy
,
W.
, 1999, “
The Control of Foot Placement During Compensatory Stepping Reactions: Does Speed of Response Take Precedence Over Stability?
IEEE Trans. Rehabil. Eng.
1063-6528,
7
(
1
), pp.
80
90
.
15.
van den Bogert
,
A. J.
,
Pavol
,
M.
, and
Grabiner
,
M.
, 2002, “
Response Time is More Important Than Walking Speed for the Ability of Older Adults to Avoid a Fall After a Trip
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
199
205
.
16.
Hsiao-Wecksler
,
E.
, and
Robinovitch
,
S.
, 2007, “
The Effect of Step Length on Young and Elderly Women’s Ability to Recover Balance
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
5
), pp.
574
580
.
17.
Thelen
,
D.
,
Wojcik
,
L.
,
Schultz
,
A.
,
Ashton-Miller
,
J.
, and
Alexander
,
N.
, 1997, “
Age Differences in Using a Rapid Step to Regain Balance During a Forward Fall
,”
J. Gerontol., Ser. A
1079-5006,
52
(
1
), pp.
M8
13
.
18.
Smeesters
,
C.
,
Hayes
,
W.
, and
McMahon
,
T.
, 2001, “
The Threshold Trip Duration for Which Recovery is no Longer Possible is Associated With Strength and Reaction Time
,”
J. Biomech.
0021-9290,
34
(
5
), pp.
589
595
.
19.
Wojcik
,
L.
,
Thelen
,
D.
,
Schultz
,
A.
,
Ashton-Miller
,
J.
, and
Alexander
,
N.
, 2001, “
Age and Gender Differences in Peak Lower Extremity Joint Torques and Ranges of Motion Used During Single-Step Balance Recovery From a Forward Fall
,”
J. Biomech.
0021-9290,
34
(
1
), pp.
67
73
.
20.
Pijnappels
,
M.
,
Reeves
,
N.
,
Maganaris
,
C.
, and
van Dieën
,
J.
, 2008, “
Tripping Without Falling; Lower Limb Strength, a Limitation for Balance Recovery and a Target for Training in the Elderly
,”
J. Electromyogr Kinesiol
1050-6411,
18
(
2
), pp.
188
196
.
21.
Hsiao-Wecksler
,
E.
, 2008, “
Biomechanical and Age-Related Differences in Balance Recovery Using the Tether-Release Method
,”
J. Electromyogr Kinesiol
1050-6411,
18
(
2
), pp.
179
187
.
22.
Luchies
,
C.
,
Alexander
,
N.
,
Schultz
,
A.
, and
Ashton-Miller
,
J.
, 1994, “
Stepping Responses of Young and Old Adults to Postural Disturbances: Kinematics
,”
J. Am. Geriatr. Soc.
0002-8614,
42
(
5
), pp.
506
512
.
23.
McIlroy
,
W.
, and
Maki
,
B.
, 1996, “
Age-Related Changes in Compensatory Stepping in Response to Unpredictable Perturbations
,”
J. Gerontol., Ser. A
1079-5006,
51
(
6
), pp.
289
296
.
24.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
, 1998, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
281
288
.
25.
Kuo
,
A.
, 2001, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
264
269
.
26.
Kuo
,
A.
, 2002, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
113
120
.
27.
Hobbelen
,
D.
, and
Wisse
,
M.
, 2008, “
Ankle Actuation for Limit Cycle Walkers
,”
Int. J. Robot. Res.
0278-3649,
27
(
6
), pp.
709
735
.
28.
Hsiao
,
E.
, and
Robinovitch
,
S.
, 1999, “
Biomechanical Influences on Balance Recovery by Stepping
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1099
1106
.
29.
McGeer
,
T.
, 1990,
Passive Walking With Knees
,
Proceedings IEEE Int. Robotics & Automation Conference
,
IEEE Computer Society
,
Los Alamitos, CA
, pp.
1640
1645
.
30.
Wisse
,
M.
,
Schwab
,
A.
,
van der Linde
,
R.
, and
van der Helm
,
F.
, 2005, “
How to Keep From Falling Forward: Elementary Swing Leg Action for Passive Dynamic Walkers
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
3
), pp.
393
401
.
31.
Alexander
,
R.
, 1989, “
Optimization and Gaits in the Locomotion of Vertebrates
,”
Physiol. Rev.
0031-9333,
69
(
1199–1227
), pp.
29
64
.
32.
Kram
,
R.
, and
Taylor
,
C.
, 1990, “
Energetics of Running: A New Perspective
,”
Nature (London)
0028-0836,
346
(
6281
), pp.
265
267
.
33.
Doke
,
J.
, and
Kuo
,
A.
, 2007, “
Energetic Cost of Producing Cyclic Muscle Force, Rather Than Work, to Swing the Human Leg
,”
J. Exp. Biol.
0022-0949,
210
(
13
), pp.
2390
2398
.
34.
Abbott
,
B.
,
Bigland
,
B.
, and
Ritchie
,
J.
, 1952, “
The Physiological Cost of Negative Work
,”
J. Physiol. (London)
0022-3751,
117
(
3
), pp.
380
390
.
35.
Doke
,
J.
,
Donelan
,
J.
, and
Kuo
,
A.
, 2005, “
Mechanics and Energetics of Swinging the Human Leg
,”
J. Exp. Biol.
0022-0949,
208
(
3
), pp.
439
445
.
You do not currently have access to this content.