Characterization of high-intensity focused ultrasound (HIFU) systems using ex vivo tissues is an important part of the preclinical testing for new HIFU devices. In ex vivo characterization, the lesion volume produced by the absorption of HIFU energy is quantified as operational parameters are varied. This paper examines the three methods used for lesion-volume quantification: histology, magnetic resonance (MR) imaging, and numerical calculations. The methods were studied in the context of a clinically relevant problem for HIFU procedures—that of quantifying the change in the lesion volume with changing sonication time. The lesion volumes of sonicated samples of porcine liver were determined using the three methods, at focal intensities ranging from 800W/cm2 to 1700W/cm2 and sonication times between 20 s and 40 s. It was found that histology consistently yielded lower lesion volumes than the other two methods, and the calculated values were below magnetic resonance imaging (MRI) at high applied energies. Still, the three methods agreed with each other to within a ±10% difference for all of the experiments. Increasing the sonication time produced much larger changes in the lesion volume than increasing the acoustic intensity, for the same total energy expenditure, at lower energy (less than 1000 J) levels. At higher energy levels, (around 1500 J), increasing the sonication time and increasing the intensity produced roughly the same change in the lesion volume for the same total energy expenditure.

1.
Hynynen
,
K.
,
McDannold
,
N.
,
Clement
,
G.
,
Jolesz
,
F. A.
,
Zadicario
,
E.
,
Killiany
,
R.
,
Moore
,
T.
, and
Rosen
,
D.
, 2006, “
Pre-Clinical Testing of a Phased Array Ultrasound System for MRI-Guided Noninvasive Surgery of the Brain—A Primary Study
,”
Eur. J. Radiol.
0720-048X,
59
, pp.
149
156
.
2.
Lee
,
K.
, and
Yoon
,
S. W.
, 2005, “
Prediction of the Size of a Thermal Lesion in Soft Tissue During HIFU Treatment
,”
J. Korean Phys. Soc.
0374-4884,
47
, pp.
640
645
.
3.
Damianou
,
C.
, and
Hynynen
,
K.
, 1994, “
The Effect of Various Physical Parameters on the Size and Shape of Necrosed Tissue Volume During Ultrasound Surgery
,”
J. Acoust. Soc. Am.
0001-4966,
95
, pp.
1641
1649
.
4.
Wang
,
X. J.
,
Yuan
,
S. L.
,
Lu
,
Y. R.
,
Zhang
,
J.
,
Liu
,
B. T.
,
Zeng
,
W. F.
,
He
,
Y. M.
, and
Fu
,
Y. R.
, 2005, “
Growth Inhibition of High-Intensity Focused Ultrasound on Hepatic Cancer In Vivo
,”
World J. Gastroenterol.
1007-9327,
28
, pp.
1007
9327
.
5.
Li
,
F.
,
Feng
,
R.
,
Zhang
,
Q.
,
Bai
,
J.
, and
Wang
,
Z.
, 2006, “
Estimation of HIFU Induced Lesions In Vitro: Numerical Simulation and Experiment
,”
Ultrasonics
0041-624X,
44
, pp.
e337
e340
.
6.
Enholm
,
J. K.
,
Kohler
,
M. O.
,
Quesson
,
B.
,
Mougenot
,
C.
,
Moonen
,
C. T. W.
, and
Sokka
,
S. D.
, 2010, “
Improved Volumetric MR-HIFU Ablation by Robust Binary Feedback Control
,”
IEEE Trans. Biomed. Eng.
0018-9294,
57
, pp.
103
113
.
7.
Petrusca
,
L.
,
Salomir
,
R.
,
Brasset
,
L.
,
Chavrier
,
F.
,
Cotton
,
F.
, and
Chapelon
,
J. Y.
, 2010, “
Sector-Switching Sonication Strategy for Accelerated HIFU Treatment of Prostrate Cancer: In Vitro Experimental Validation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
57
, pp.
17
23
.
8.
Köhler
,
M. O.
,
Mougenot
,
C.
,
Quesson
,
B.
,
Enholm
,
J.
,
Le Bail
,
B.
,
Laurent
,
C.
,
Moonen
,
C. T.
, and
Ehnholm
,
G. J.
, 2009, “
Volumetric HIFU Ablation Under 3D Guidance of Rapid MRI Thermometry
,”
Med. Phys.
0094-2405,
36
, pp.
3521
3535
.
9.
Spoo
,
J.
,
Simiantonakis
,
I.
,
Jenne
,
J.
,
Raster
,
R.
,
Bohris
,
C.
,
Hlavac
,
M.
,
Debus
,
J.
, and
Huber
,
P.
, 1999, “
MRI Controlled HIFU Treatment of Breast Tissue
,”
Proc.-IEEE Ultrason. Symp.
1051-0117,
2
, pp.
1405
1408
.
10.
Solomon
,
S. B.
,
Nichol
,
T. L.
,
Chan
,
D. Y.
,
Fjield
,
T.
,
Fried
,
N.
, and
Kavoussi
,
L. R.
, 2003, “
Histology Evolution of High-Intensity Focussed Ultrasound in Rabbit Muscle
,”
Invest. Radiol.
0020-9996,
38
, pp.
293
301
.
11.
Ishikawa
,
T.
,
Okai
,
T.
,
Sasaki
,
K.
,
Umemura
,
S.
,
Fujiwara
,
R.
,
Kushima
,
M.
,
Ichihara
,
M.
, and
Ichizuka
,
K.
, 2003, “
Functional and Histological Changes in Rat Femoral Arteries by HIFU Exposure
,”
Ultrasound Med. Biol.
0301-5629,
29
, pp.
1471
1477
.
12.
Wu
,
F.
,
Cao
,
Y. D.
,
Xu
,
Z. L.
,
Zhou
,
Q.
,
Zhu
,
H.
, and
Chen
,
W. Z.
, 2006, “
Heat Fixation of Cancer Cells Ablated With High-Intensity-Focused Ultrasound in Patients With Breast Cancer
,”
Am. J. Surg.
0002-9610,
192
, pp.
179
184
.
13.
Hariharan
,
P.
,
Myers
,
M. R.
, and
Banerjee
,
R. K.
, 2007, “
HIFU Procedures at Moderate Intensities—Effect of Large Blood Vessels
,”
Phys. Med. Biol.
0031-9155,
52
, pp.
3493
3513
.
14.
Sapareto
,
S.
, and
Dewey
,
W. C.
, 1984, “
Thermal Dose Determination in Cancer Therapy
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
10
, pp.
787
800
.
15.
Maruvada
,
S.
, 2008, “
A Radiation Force Technique for Acoustic Power Calibration of High Intensity Focused Ultrasound Transducers. (A)
,”
J. Acoust. Soc. Am.
0001-4966,
124
, pp.
2566
2566
.
16.
Irving
,
B. A.
,
Weltman
,
J. Y.
,
Brock
,
D. W.
,
Davis
,
C. K.
,
Gaesser
,
G. A.
, and
Weltman
,
A.
, 2007, “
NIH IMAGEJ and SLICE-O-MATIC Computed Tomography Imaging Software to Quantify Soft Tissue
,”
Obesity
1071-7323,
15
, pp.
370
376
.
17.
Bovik
,
A.
, 2001,
Handbook of Image and Video Processing
,
Elsevier
,
New York
.
18.
Hamilton
,
M. F.
, and
Morfey
,
C. F.
, 1998,
Model Equations Nonlinear Acoustics
,
M. F.
Hamilton
and
D. T.
Blackstock
, eds.,
Academic
,
San Diego, CA
.
19.
Lee
,
Y. S.
, 1993, “
Numerical Solution of the KZK Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
20.
He
,
X.
,
Bhowmick
,
S.
, and
Bischof
,
J. C.
, 2009, “
Thermal Therapy in Urologic Systems: A Comparison of Arrhenius and Thermal Isoeffective Dose Models in Predicting Hyperthermia Injury
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
074507
.
21.
Righetti
,
R.
,
Kallel
,
F.
,
Stafford
,
R. J.
,
Price
,
R. E.
,
Krouskop
,
T. A.
,
Hazle
,
J. D.
, and
Ophir
,
J.
, 1999, “
Elastographic Characterization of HIFU-Induced Lesions in Canine Livers
,”
Ultrasound Med. Biol.
0301-5629,
25
, pp.
1099
1113
.
22.
Khokhlova
,
V. A.
,
Bailey
,
M. R.
,
Reed
,
J. A.
,
Cunitz
,
B. W.
, and
Kaczkowski
,
P. J.
, 2006, “
Effects of Nonlinear Propagation, Cavitation, and Boiling in Lesion Formation by High Intensity Focused Ultrasound in a Gel Phantom
,”
J. Acoust. Soc. Am.
0001-4966,
119
, pp.
1834
1848
.
You do not currently have access to this content.