Evaluating total knee replacement kinematics and contact pressure distributions is an important element of preclinical assessment of implant designs. Although physical testing is essential in the evaluation process, validated computational models can augment these experiments and efficiently evaluate perturbations of the design or surgical variables. The objective of the present study was to perform an initial kinematic verification of a dynamic finite element model of the Kansas knee simulator by comparing predicted tibio- and patellofemoral kinematics with experimental measurements during force-controlled gait simulation. A current semiconstrained, cruciate-retaining, fixed-bearing implant mounted in aluminum fixtures was utilized. An explicit finite element model of the simulator was developed from measured physical properties of the machine, and loading conditions were created from the measured experimental feedback data. The explicit finite element model allows both rigid body and fully deformable solutions to be chosen based on the application of interest. Six degrees-of-freedom kinematics were compared for both tibio- and patellofemoral joints during gait loading, with an average root mean square (rms) translational error of 1.1 mm and rotational rms error of 1.3 deg. Model sensitivity to interface friction and damping present in the experimental joints was also evaluated and served as a secondary goal of this paper. Modifying the metal-polyethylene coefficient of friction from 0.1 to 0.01 varied the patellar flexion-extension and tibiofemoral anterior-posterior predictions by 7 deg and 2 mm, respectively, while other kinematic outputs were largely insensitive.

1.
DesJardins
,
J. D.
,
Walker
,
P. S.
,
Haider
,
H.
, and
Perry
,
J.
, 2000, “
The Use of a Force-Controlled Dynamic Knee Simulator to Quantify the Mechanical Performance of Total Knee Replacement Designs During Functional Activity
,”
J. Biomech.
0021-9290,
33
, pp.
1231
1242
.
2.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkin
,
S. A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
,
J. P.
, 1997, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
0021-9290,
30
, pp.
83
89
.
3.
Zavatsky
,
A. B.
, 1997, “
A Kinematic-Freedom Analysis of a Flexed-Knee-Stance Testing Rig
,”
J. Biomech.
0021-9290,
30
, pp.
277
280
.
4.
Zachman
,
N. J.
,
Hillberry
,
B. M.
, and
Kettlekamp
,
D. B.
, 1978, “
Design of a Load Simulator for the Dynamic Evaluation of Prosthetic Knee Joints
,” ASME Paper No. 78-DET-59, pp.
1
11
.
5.
Chao
,
E. Y. S.
,
MacWilliams
,
B. A.
,
Chan
,
B.
, and
Meija
,
L.
, 1994, “
Evaluation of a Dynamic Joint Simulator
,”
ASME Bioeng. Div. Publ. Bed.
, Vol.
28
, pp.
281
282
.
6.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
, 2005, “
Simulating Dynamic Activities Using a Five-Axis Knee Simulator
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
123
133
.
7.
Sathasivam
,
S.
, and
Walker
,
P. S.
, 1997, “
A Computer Model With Surface Friction for the Prediction of Total Knee Kinematics
,”
J. Biomech.
0021-9290,
30
, pp.
177
184
.
8.
Sathasivam
,
S.
, and
Walker
,
P. S.
, 1998, “
A Computer Model to Predict Subsurface Damage in Tibial Inserts of Total Knees
,”
J. Orthop. Res.
0736-0266,
16
, pp.
564
571
.
9.
Rawlinson
,
J. J.
, and
Bartel
,
D. L.
, 2002, “
Flat Medial-Lateral Conformity in Total Knee Replacements Does Not Minimize Contact Stresses
,”
J. Biomech.
0021-9290,
35
, pp.
27
34
.
10.
Giddings
,
V. L.
,
Kurtz
,
S. M.
, and
Edidin
,
A. A.
, 2001, “
Total Knee Replacement Polyethylene Stresses During Loading in a Knee Simulator
,”
ASME J. Tribol.
0742-4787,
123
, pp.
842
847
.
11.
Piazza
,
S. J.
, and
Delp
,
S. L.
, 2001, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
599
606
.
12.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
, 2002, “
Simulation of a Knee Joint Replacement During Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
0021-9290,
35
, pp.
267
275
.
13.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005a, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
0021-9290,
38
, pp.
323
331
.
14.
Miller
,
M. C.
,
Zhang
,
A. X.
,
Petrella
,
A. J.
,
Berger
,
R. A.
, and
Rubash
,
H. E.
, 2001, “
The Effect of Component Placement on Knee Kinetics After Arthroplasty With an Unconstrained Prosthesis
,”
J. Orthop. Res.
0736-0266,
19
, pp.
614
620
.
15.
Rhoads
,
D. D.
,
Noble
,
P. C.
,
Reuben
,
J. D.
,
Mahoney
,
O.
, and
Tullow
,
H. S.
, 1990, “
The Effect of Femoral Component Position on Patellar Tracking After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
260
, pp.
43
51
.
16.
Singerman
,
R.
,
White
,
C.
, and
Davy
,
D. T.
, 1995, “
Reduction of Patellofemoral Contact Forces Following Anterior Displacement of the Tibial Tubercle
,”
J. Orthop. Res.
0736-0266,
13
, pp.
279
285
.
17.
Singerman
,
R.
,
Pagan
,
H. D.
,
Peyser
,
A. B.
, and
Goldberg
,
V. M.
, 1997, “
Effect of Femoral Component Rotation and Patellar Design on Patellar Forces
,”
Clin. Orthop. Relat. Res.
0009-921X,
334
, pp.
345
353
.
18.
Yoshii
,
I.
,
Whiteside
,
L. A.
, and
Anouchi
,
Y. S.
, 1992, “
The Effect of Patellar Button Placement and Femoral Component Design on Patellar Tracking in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
275
, pp.
211
219
.
19.
Anouchi
,
Y. S.
,
Whiteside
,
L. A.
,
Kaiser
,
A. D.
, and
Milliano
,
M. T.
, 1993, “
The Effects of Axial Rotational Alignment of the Femoral Component on Knee Stability and Patellar Tracking in Total Knee Arthroplasty Demonstrated on Autopsy Specimens
,”
Clin. Orthop. Relat. Res.
0009-921X,
287
, pp.
170
177
.
20.
Guess
,
T. M.
, and
Maletsky
,
L. P.
, 2005, “
Computational Modeling of a Dynamic Knee Simulator for Reproduction of Knee Loading
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1216
1221
.
21.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
136
144
.
22.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005b, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
813
818
.
23.
DeHeer
,
D. C.
, and
Hillberry
,
B. M.
, 1992, “
The Effect of Thickness and Nonlinear Material Behavior on Contact Stresses in Polyethylene Tibial Components
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
17
, p.
793
.
24.
Lafortune
,
M. A.
, 1984, “
The Use of Intra-Cortical Pins to Measure the Motion of the Knee Joint During Walking
,” Ph.D. thesis, Penn State University, University Park, PA.
25.
Maletsky
,
L. P.
,
Sun
,
J.
, and
Morton
,
N. A.
, 2007, “
Accuracy of an Optical Active-Marker System to Track the Relative Motion of Rigid Bodies
,”
J. Biomech.
0021-9290,
40
, pp.
682
685
.
26.
Morton
,
M. A.
,
Maletsky
,
L. P.
,
Pal
,
S.
, and
Laz
,
P. J.
, 2007, “
Effect of Variability in Anatomical Landmark Location on Knee Kinematic Description
,”
J. Orthop. Res.
0736-0266,
25
, pp.
1221
1230
.
You do not currently have access to this content.