Abstract

Hemodynamic factors have long been associated with clinical outcomes in the treatment of cerebral aneurysms. Computational studies of cerebral aneurysm hemodynamics have provided valuable estimates of the mechanical environment experienced by the endothelium in both the parent vessel and aneurysmal dome walls and have correlated them with disease state. These computational-clinical studies have recently been correlated with the response of endothelial cells (EC) using either idealized or patient-specific models. Here, we present a robust workflow for generating anatomic-scale aneurysm models, establishing luminal cultures of ECs at physiological relevant flow profiles, and comparing EC responses to curvature mediated flow. We show that flow patterns induced by parent vessel curvature produce changes in wall shear stress (WSS) and wall shear stress gradients (WSSG) that are correlated with differences in cell morphology and cellular protein localization. Cells in higher WSS regions align better with the flow and display strong Notch1-extracellular domain (ECD) polarization, while, under low WSS, differences in WSSG due to curvature change were associated with less alignment and attenuation of Notch1-ECD polarization in ECs of the corresponding regions. These proof-of-concept results highlight the use of engineered cellularized aneurysm models for connecting computational fluid dynamics to the underlying endothelial biology that mediates disease.

References

1.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2009
, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
91
107
.10.1146/annurev.fluid.40.111406.102126
2.
Sheinberg
,
D.
,
McCarthy
,
D.
,
Elwardany
,
O.
,
Bryant
,
J.-P.
,
Luther
,
E.
,
Chen
,
S.
,
Thompson
,
J.
, and
Starke
,
R.
,
2019
, “
Endothelial Dysfunction in Cerebral Aneurysms
,”
Neurosurg. Focus
,
47
(
1
), p.
E3
.10.3171/2019.4.FOCUS19221
3.
Xiang
,
J.
,
Natarajan
,
S. K.
,
Tremmel
,
M.
,
Ma
,
D.
,
Mocco
,
J.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2011
, “
Hemodynamic-Morphologic Discriminants for Intracranial Aneurysm Rupture
,”
Stroke J. Cereb. Circ.
,
42
(
1
), pp.
144
152
.10.1161/STROKEAHA.110.592923
4.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
5.
Dolan
,
J. M.
,
Sim
,
F. J.
,
Meng
,
H.
, and
Kolega
,
J.
,
2012
, “
Endothelial Cells Express a Unique Transcriptional Profile Under Very High Wall Shear Stress Known to Induce Expansive Arterial Remodeling
,”
Am. J. Physiol. Cell Physiol.
,
302
(
8
), pp.
C1109
1118
.10.1152/ajpcell.00369.2011
6.
Dolan
,
J. M.
,
Kolega
,
J.
, and
Meng
,
H.
,
2013
, “
High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1411
1427
.10.1007/s10439-012-0695-0
7.
Amaya
,
R.
,
Cancel
,
L. M.
, and
Tarbell
,
J. M.
,
2016
, “
Interaction Between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression
,”
PLoS One
,
11
(
11
), p.
e0166569
.10.1371/journal.pone.0166569
8.
Mannino
,
R. G.
,
Myers
,
D. R.
,
Ahn
,
B.
,
Wang
,
Y.
,
Rollins
,
M.
,
Gole
,
H.
,
Lin
,
A. S.
,
Guldberg
,
R. E.
,
Giddens
,
D. P.
,
Timmins
,
L. H.
, and
Lam
,
W. A.
,
2015
, “
Do-It-Yourself in vitro Vasculature That Recapitulates in vivo Geometries for Investigating Endothelial-Blood Cell Interactions
,”
Sci. Rep.
,
5
(
1
), pp.
1
12
.10.1038/srep12401
9.
Wang
,
Y.
,
Emeto
,
T. I.
,
Lee
,
J.
,
Marshman
,
L.
,
Moran
,
C.
,
Seto
,
S.
, and
Golledge
,
J.
,
2015
, “
Mouse Models of Intracranial Aneurysm
,”
Brain Pathol. Zurich Switz.
,
25
(
3
), pp.
237
247
.10.1111/bpa.12175
10.
Chivukula
,
V. K.
,
Levitt
,
M. R.
,
Clark
,
A.
,
Barbour
,
M. C.
,
Sansom
,
K.
,
Johnson
,
L.
,
Kelly
,
C. M.
,
Geindreau
,
C.
,
Rolland du Roscoat
,
S.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2019
, “
Reconstructing Patient-Specific Cerebral Aneurysm Vasculature for in vitro Investigations and Treatment Efficacy Assessments
,”
J. Clin. Neurosci. Off. J. Neurosurg. Soc. Aust.
,
61
, pp.
153
159
.10.1016/j.jocn.2018.10.103
11.
Liu
,
Y.
,
Gao
,
Q.
,
Du
,
S.
,
Chen
,
Z.
,
Fu
,
J.
,
Chen
,
B.
,
Liu
,
Z.
, and
He
,
Y.
,
2017
, “
Fabrication of Cerebral Aneurysm Simulator With a Desktop 3D Printer
,”
Sci. Rep.
,
7
, Article No. 44301.10.1038/srep44301
12.
Kaneko
,
N.
,
Mashiko
,
T.
,
Namba
,
K.
,
Tateshima
,
S.
,
Watanabe
,
E.
, and
Kawai
,
K.
,
2018
, “
A Patient-Specific Intracranial Aneurysm Model With Endothelial Lining: A Novel in vitro Approach to Bridge the Gap Between Biology and Flow Dynamics
,”
J. NeuroInterventional Surg.
,
10
(
3
), pp.
306
309
.10.1136/neurintsurg-2017-013087
13.
Levitt
,
M. R.
,
Mandrycky
,
C.
,
Abel
,
A.
,
Kelly
,
C. M.
,
Levy
,
S.
,
Chivukula
,
V. K.
,
Zheng
,
Y.
,
Aliseda
,
A.
, and
Kim
,
L. J.
,
2019
, “
Genetic Correlates of Wall Shear Stress in a Patient-Specific 3D-Printed Cerebral Aneurysm Model
,”
J. NeuroIntervent. Surg.
,
11
(
10
), pp.
999
1003
.10.1136/neurintsurg-2018-014669
14.
Woodfin
,
A.
,
Voisin
,
M.-B.
, and
Nourshargh
,
S.
,
2007
, “
PECAM-1: A Multi-Functional Molecule in Inflammation and Vascular Biology
,”
Arterioscler. Thromb. Vasc. Biol.
,
27
(
12
), pp.
2514
2523
.10.1161/ATVBAHA.107.151456
15.
Krebs
,
L. T.
,
Xue
,
Y.
,
Norton
,
C. R.
,
Shutter
,
J. R.
,
Maguire
,
M.
,
Sundberg
,
J. P.
,
Gallahan
,
D.
,
Closson
,
V.
,
Kitajewski
,
J.
,
Callahan
,
R.
,
Smith
,
G. H.
,
Stark
,
K. L.
, and
Gridley
,
T.
,
2000
, “
Notch Signaling is Essential for Vascular Morphogenesis in Mice
,”
Genes Dev.
,
14
(
11
), pp.
1343
1352
.10.1101/gad.14.11.1343
16.
Mack
,
J. J.
, and
Iruela-Arispe
,
M. L.
,
2018
, “
NOTCH Regulation of the Endothelial Cell Phenotype
,”
Curr. Opin. Hematol.
,
25
(
3
), pp.
212
218
.10.1097/MOH.0000000000000425
17.
Fang
,
J. S.
,
Coon
,
B. G.
,
Gillis
,
N.
,
Chen
,
Z.
,
Qiu
,
J.
,
Chittenden
,
T. W.
,
Burt
,
J. M.
,
Schwartz
,
M. A.
, and
Hirschi
,
K. K.
,
2017
, “
Shear-Induced Notch-Cx37-P27 Axis Arrests Endothelial Cell Cycle to Enable Arterial Specification
,”
Nat. Commun.
,
8
(
1
), p.
2149
.10.1038/s41467-017-01742-7
18.
Mack
,
J. J.
,
Mosqueiro
,
T. S.
,
Archer
,
B. J.
,
Jones
,
W. M.
,
Sunshine
,
H.
,
Faas
,
G. C.
,
Briot
,
A.
,
Aragón
,
R. L.
,
Su
,
T.
,
Romay
,
M. C.
,
McDonald
,
A. I.
,
Kuo
,
C.-H.
,
Lizama
,
C. O.
,
Lane
,
T. F.
,
Zovein
,
A. C.
,
Fang
,
Y.
,
Tarling
,
E. J.
,
Vallim
,
T. Q.
,
de
,
A.
,
Navab
,
M.
,
Fogelman
,
A. M.
,
Bouchard
,
L. S.
, and
Iruela-Arispe
,
M. L.
,
2017
, “
NOTCH1 is a Mechanosensor in Adult Arteries
,”
Nat. Commun.
,
8
(
1
), p.
1620
.10.1038/s41467-017-01741-8
19.
Kong
,
D.-H.
,
Kim
,
Y. K.
,
Kim
,
M. R.
,
Jang
,
J. H.
, and
Lee
,
S.
,
2018
, “
Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer
,”
Int. J. Mol. Sci.
,
19
(
4
), Article No. 1057.10.3390/ijms19041057
20.
Suo
,
J.
,
Ferrara
,
D. E.
,
Sorescu
,
D.
,
Guldberg
,
R. E.
,
Robert
,
T. W.
, and
Giddens
,
D. P.
,
2007
, “
Hemodynamic Shear Stresses in Mouse Aortas
,”
Arterioscler. Thromb. Vasc. Biol.
,
27
(
2
), pp.
346
351
.10.1161/01.ATV.0000253492.45717.46
21.
Kawecki
,
C.
,
Lenting
,
P. J.
, and
Denis
,
C. V.
,
2017
, “
Von Willebrand Factor and Inflammation
,”
J. Thromb. Haemost.
,
15
(
7
), pp.
1285
1294
.10.1111/jth.13696
22.
Valentijn
,
K. M.
,
Sadler
,
J. E.
,
Valentijn
,
J. A.
,
Voorberg
,
J.
, and
Eikenboom
,
J.
,
2011
, “
Functional Architecture of Weibel-Palade Bodies
,”
Blood
,
117
(
19
), pp.
5033
5043
.10.1182/blood-2010-09-267492
23.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J.-Y.
,
White
,
D. J.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.10.1038/nmeth.2019
24.
McGah
,
P. M.
,
Levitt
,
M. R.
,
Barbour
,
M. C.
,
Morton
,
R. P.
,
Nerva
,
J. D.
,
Mourad
,
P. D.
,
Ghodke
,
B. V.
,
Hallam
,
D. K.
,
Sekhar
,
L. N.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2014
, “
Accuracy of Computational Cerebral Aneurysm Hemodynamics Using Patient-Specific Endovascular Measurements
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
503
514
.10.1007/s10439-013-0930-3
25.
Chivukula
,
V. K.
,
Marsh
,
L.
,
Chassagne
,
F.
,
Barbour
,
M. C.
,
Kelly
,
C. M.
,
Levy
,
S.
,
Geindreau
,
C.
,
du Roscoat
,
S. R.
,
Kim
,
L. J.
,
Levitt
,
M. R.
, and
Aliseda
,
A.
,
2021
, “
Lagrangian Trajectory Simulation of Platelets and Synchrotron Microtomography Augment Hemodynamic Analysis of Intracranial Aneurysms Treated With Embolic Coils
,”
ASME J. Biomech. Eng.
,
143
(
7
), p.
071002
.10.1115/1.4050375
26.
Marsh
,
L. M. M.
,
Barbour
,
M. C.
,
Chivukula
,
V. K.
,
Chassagne
,
F.
,
Kelly
,
C. M.
,
Levy
,
S. H.
,
Kim
,
L. J.
,
Levitt
,
M. R.
, and
Aliseda
,
A.
,
2020
, “
Platelet Dynamics and Hemodynamics of Cerebral Aneurysms Treated With Flow-Diverting Stents
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
490
501
.10.1007/s10439-019-02368-0
27.
Lee
,
S.-W.
, and
Steinman
,
D. A.
,
2007
, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
129
(
2
), pp.
273
278
.10.1115/1.2540836
28.
Barbour
,
M.
,
Chassagne
,
F.
,
Levitt
,
M.
, and
Aliseda
,
A.
, In Press, “
The Combined Influence of Reynolds and Dean Numbers on the Flow Intracranial Aneurysms. Part 2, Effect of Flow-Diverting Stent Treatment
,”
J. Fluid Mech.
, 915, Article No. A124.
29.
Chassagne
,
F.
,
Barbour
,
M.
,
Levitt
,
M.
, and
Aliseda
,
A.
, In Press, “
The Combined Influence of Reynolds and Dean Numbers on the Flow Intracranial Aneurysms. Part 1 Untreated Models
,”
J. Fluid Mech.
915, Article No. A123.
30.
Levitt
,
M. R.
,
Barbour
,
M. C.
,
S. R. du
,
R.
,
Geindreau
,
C.
,
Chivukula
,
V. K.
,
McGah
,
P. M.
,
Nerva
,
J. D.
,
Morton
,
R. P.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2017
, “
Computational Fluid Dynamics of Cerebral Aneurysm Coiling Using High-Resolution and High-Energy Synchrotron X-Ray Microtomography: Comparison With the Homogeneous Porous Medium Approach
,”
J. NeuroIntervent. Surg.
,
9
(
8
).10.1136/neurintsurg-2016-012479
31.
O'Keeffe
,
L. M.
,
Muir
,
G.
,
Piterina
,
A. V.
, and
McGloughlin
,
T.
,
2009
, “
Vascular Cell Adhesion Molecule-1 Expression in Endothelial Cells Exposed to Physiological Coronary Wall Shear Stresses
,”
ASME J. Biomech. Eng.
,
131
(
8
), p.
081003
.10.1115/1.3148191
32.
Varble
,
N.
,
Tutino
,
V. M.
,
Yu
,
J.
,
Sonig
,
A.
,
Siddiqui
,
A. H.
,
Davies
,
J. M.
, and
Meng
,
H.
,
2018
, “
Shared and Distinct Rupture Discriminants of Small and Large Intracranial Aneurysms
,”
Stroke
,
49
(
4
), pp.
856
864
.10.1161/STROKEAHA.117.019929
33.
Frösen
,
J.
,
2016
, “
Flow Dynamics of Aneurysm Growth and Rupture: Challenges for the Development of Computational Flow Dynamics as a Diagnostic Tool to Detect Rupture-Prone Aneurysms
,”
Acta Neurochir. Suppl.
,
123
, pp.
89
95
.10.1007/978-3-319-29887-0
34.
Ho
,
W. H.
,
Tshimanga
,
I. J.
,
Ngoepe
,
M. N.
,
Jermy
,
M. C.
, and
Geoghegan
,
P. H.
,
2020
, “
Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms
,”
Cardiovasc. Eng. Technol.
,
11
(
1
), pp.
14
23
.10.1007/s13239-019-00444-z
35.
Baeyens
,
N.
,
Bandyopadhyay
,
C.
,
Coon
,
B. G.
,
Yun
,
S.
, and
Schwartz
,
M. A.
,
2016
, “
Endothelial Fluid Shear Stress Sensing in Vascular Health and Disease
,”
J. Clin. Invest.
,
126
(
3
), pp.
821
828
.10.1172/JCI83083
36.
Dolan
,
J. M.
,
Meng
,
H.
,
Singh
,
S.
,
Paluch
,
R.
, and
Kolega
,
J.
,
2011
, “
High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment
,”
Ann. Biomed. Eng.
,
39
(
6
), pp.
1620
1631
.10.1007/s10439-011-0267-8
37.
Dolan
,
J. M.
,
Meng
,
H.
,
Sim
,
F. J.
, and
Kolega
,
J.
,
2013
, “
Differential Gene Expression by Endothelial Cells Under Positive and Negative Streamwise Gradients of High Wall Shear Stress
,”
Am. J. Physiol. Cell Physiol.
,
305
(
8
), pp.
C854
866
.10.1152/ajpcell.00315.2012
38.
Kallmann
,
B. A.
,
Hummel
,
V.
,
Lindenlaub
,
T.
,
Ruprecht
,
K.
,
Toyka
,
K. V.
, and
Rieckmann
,
P.
,
2000
, “
Cytokine-Induced Modulation of Cellular Adhesion to Human Cerebral Endothelial Cells is Mediated by Soluble Vascular Cell Adhesion Molecule-1
,”
Brain
,
123
(
4
), pp.
687
697
.10.1093/brain/123.4.687
39.
Hellström
,
M.
,
Phng
,
L.-K.
,
Hofmann
,
J. J.
,
Wallgard
,
E.
,
Coultas
,
L.
,
Lindblom
,
P.
,
Alva
,
J.
,
Nilsson
,
A.-K.
,
Karlsson
,
L.
,
Gaiano
,
N.
,
Yoon
,
K.
,
Rossant
,
J.
,
Iruela-Arispe
,
M. L.
,
Kalén
,
M.
,
Gerhardt
,
H.
, and
Betsholtz
,
C.
,
2007
, “
Dll4 Signalling Through Notch1 Regulates Formation of Tip Cells During Angiogenesis
,”
Nature
,
445
(
7129
), pp.
776
780
.10.1038/nature05571
40.
Bentley
,
K.
,
Franco
,
C. A.
,
Philippides
,
A.
,
Blanco
,
R.
,
Dierkes
,
M.
,
Gebala
,
V.
,
Stanchi
,
F.
,
Jones
,
M.
,
Aspalter
,
I. M.
,
Cagna
,
G.
,
Weström
,
S.
,
Claesson-Welsh
,
L.
,
Vestweber
,
D.
, and
Gerhardt
,
H.
,
2014
, “
The Role of Differential VE-Cadherin Dynamics in Cell Rearrangement During Angiogenesis
,”
Nat. Cell Biol.
,
16
(
4
), pp.
309
321
.10.1038/ncb2926
41.
Lawson
,
N. D.
,
Scheer
,
N.
,
Pham
,
V. N.
,
Kim
,
C. H.
,
Chitnis
,
A. B.
,
Campos-Ortega
,
J. A.
, and
Weinstein
,
B. M.
,
2001
, “
Notch Signaling is Required for Arterial-Venous Differentiation During Embryonic Vascular Development
,”
Dev. Camb. Engl.
,
128
(
19
), pp.
3675
3683
.10.1242/dev.128.19.3675
42.
Polacheck
,
W. J.
,
Kutys
,
M. L.
,
Yang
,
J.
,
Eyckmans
,
J.
,
Wu
,
Y.
,
Vasavada
,
H.
,
Hirschi
,
K. K.
, and
Chen
,
C. S.
,
2017
, “
A Non-Canonical Notch Complex Regulates Adherens Junctions and Vascular Barrier Function
,”
Nature
,
552
(
7684
), pp.
258
262
.10.1038/nature24998
43.
Sewduth
,
R.
, and
Santoro
,
M. M.
,
2016
, “
Decoding' Angiogenesis: New Facets Controlling Endothelial Cell Behavior
,”
Front. Physiol.
,
7
, p.
306
.10.3389/fphys.2016.00306
44.
Starke
,
R. M.
,
Chalouhi
,
N.
,
Ding
,
D.
,
Raper
,
D. M. S.
,
Mckisic
,
M. S.
,
Owens
,
G. K.
,
Hasan
,
D. M.
,
Medel
,
R.
, and
Dumont
,
A. S.
,
2014
, “
Vascular Smooth Muscle Cells in Cerebral Aneurysm Pathogenesis
,”
Transl. Stroke Res.
,
5
(
3
), pp.
338
346
.10.1007/s12975-013-0290-1
45.
Sanchez
,
M.
,
Ecker
,
O.
,
Ambard
,
D.
,
Jourdan
,
F.
,
Nicoud
,
F.
,
Mendez
,
S.
,
Lejeune
,
J.-P.
,
Thines
,
L.
,
Dufour
,
H.
,
Brunel
,
H.
,
Machi
,
P.
,
Lobotesis
,
K.
,
Bonafe
,
A.
, and
Costalat
,
V.
,
2014
, “
Intracranial Aneurysmal Pulsatility as a New Individual Criterion for Rupture Risk Evaluation: Biomechanical and Numeric Approach (IRRAs Project)
,”
Am. J. Neuroradiol.
,
35
(
9
), pp.
1765
1771
.10.3174/ajnr.A3949
46.
Moretti
,
M.
,
Prina-Mello
,
A.
,
Reid
,
A. J.
,
Barron
,
V.
, and
Prendergast
,
P. J.
,
2004
, “
Endothelial Cell Alignment on Cyclically-Stretched Silicone Surfaces
,”
J. Mater. Sci. Mater. Med.
,
15
(
10
), pp.
1159
1164
.10.1023/B:JMSM.0000046400.18607.72
47.
Halka
,
A. T.
,
Turner
,
N. J.
,
Carter
,
A.
,
Ghosh
,
J.
,
Murphy
,
M. O.
,
Kirton
,
J. P.
,
Kielty
,
C. M.
, and
Walker
,
M. G.
,
2008
, “
The Effects of Stretch on Vascular Smooth Muscle Cell Phenotype in vitro
,”
Cardiovasc. Pathol.
,
17
(
2
), pp.
98
102
.10.1016/j.carpath.2007.03.001
You do not currently have access to this content.