The combination of computational fluid dynamics (CFD) and magnetic resonance imaging (MRI) offers a promising tool that enables the prediction of blood flow patterns in subject-specific cardiovascular models. The influence of the model geometry on the accuracy of the simulation is well recognized. This paper addresses the impact of different boundary conditions on subject-specific simulations of left ventricular (LV) flow. A novel hybrid method for prescribing effective inflow boundary conditions in the mitral valve plane has been developed. The detailed quantitative results highlight the strengths as well as the potential pitfalls of the approach.

1.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1980
, “
Modelling prosthetic heart valves for numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
,
37
, pp.
113
32
.
2.
Chahboune
,
B.
, and
Crolet
,
J. M.
,
1998
, “
Numerical simulation of the blood-wall interaction in the human left ventricle
,”
Eur. Phys. J.: Appl. Phys.
,
2
, pp.
291
97
.
3.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1992
, “
Cardiac fluid-dynamics
,”
Crit. Rev. Biomed. Eng.
,
20
, pp.
451
59
.
4.
Lemmon
,
J. D.
, and
Yoganathan
,
A. P.
,
2000
, “
Computational modelling of left heart diastolic function: examination of ventricular dysfunction
,”
ASME J. Biomech. Eng.
,
122
, pp.
297
303
.
5.
Vierendeels
,
J. A.
,
Riemslagh
,
K.
,
Dick
,
E.
, and
Verdonck
,
P. R.
,
2000
, “
Computer simulation of intraventricular flow and pressure gradients during diastole
,”
ASME J. Biomech. Eng.
,
122
, pp.
667
674
.
6.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
,
1995
, “
Realistic three-dimensional left ventricular ejection determined from computational fluid dynamics
,”
Med. Eng. Phys.
,
17
, pp.
602
608
.
7.
Jones T. N., and Metaxas D. N., 1998, “Patient-specific analysis of left ventricular blood flow,” Medical Image Computing and Computer-Assisted Intervention-MICCAI’98, pp. 156–166.
8.
Saber
,
N. R.
,
Gosman
,
A. D.
,
Wood
,
N. B.
,
Kilner
,
P. J.
,
Charrier
,
C.
, and
Firmin
,
D. N.
,
2001
, “
Computational flow modelling of the left ventricle based on in vivo MRI data—initial experience
,”
Ann. Biomed. Eng.
,
29
, pp.
275
283
.
9.
Saber
,
N. R.
,
Wood
,
N. B.
,
Gosman
,
A. D.
,
Yang
,
G. Z.
,
Merrifield
,
R. D.
,
Gatehouse
,
P. D.
,
Charrier
,
C. L.
, and
Firmin
,
D. N.
,
2003
, “
Progress towards parient-specific computational modelling of the left heart via combination of MRI with CFD
,”
Ann. Biomed. Eng.
31
, pp.
42
52
.
10.
Long
,
Q.
,
Xu
,
X. Y.
,
Collins
,
M. W.
,
Bourne
,
M.
, and
Griffith
,
T. M.
,
1998
, “
Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation
,”
Comput. Methods Programs Biomed.
,
56
, pp.
249
259
.
11.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Wilkes
,
A. J.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Yacoub
,
M. H.
,
2000
, “
Asymmetric redirection of flow through the heart
,”
Nature (London)
,
404
, pp.
759
761
.
12.
Fujimoto
,
S.
,
Mohiaddin
,
R. H.
,
Parker
,
K. H.
, and
Gibson
,
D. C.
,
1995
, “
Magnetic resonance velocity mapping of normal human transmitral velocity profiles
,”
Heart Vessels
,
10
,
236
240
.
13.
Kim
,
Y. H.
,
Walker
,
P. G.
,
Pedersen
,
E. M.
,
Poulsen
,
J. K.
,
Oyre
,
S.
,
Houlind
,
K.
, and
Youganathan
,
A. P.
,
1995
, “
Left ventricular blood flow patterns in normal subjects: a quantitative analysis by 3-D magnetic resonance velocity mapping
,”
J. Am. Coll. Cardiol.
,
26
,
224
238
.
You do not currently have access to this content.