This article focuses on a realistic mathematical model for multiple impacts of a rigid body to a viscoelastic ground and its comparison to theoretic results. The methodology is used to study impact on an electronic device. When an electronic device drops to the floor at an uneven level, the rapid successions of impact sequence are important for their shock response to internal structure of the devices. A three-dimensional, continuous contact, computational impact model has been developed to simulate a sequence of multiple impacts of a falling rigid body with the ground. The model simulates the impact procedure explicitly and thus is capable of providing detailed information regarding impact load, impact contact surface, and the status of the body during the impact. For the purposes of model verification, we demonstrate the numerical simulation of a falling rod problem, in which the numerical results are in good agreement with the analytic solutions based on discrete contact dynamics impact models. It is indicated by the numerical experiments that simultaneous impacts occurred to multiple locations of the body and that subsequent impacts might be larger than initial ones due to different angles of impact. The differential equation-based computational model is shown to be realistic and efficient in simulating impact sequence and laid a foundation for detailed finite element analysis of the interior impact response of an electronic device.

1.
Goyal
,
S.
,
,
J. M.
, and
Sullivan
,
P. A.
, 1998, “
The Dynamics of Clattering I: Equation of Motion and Examples
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
83
93
.
2.
Goyal
,
S.
,
,
J. M.
, and
Sullivan
,
P. A.
, 1998, “
The Dynamics of Clattering II: Global Results and Shock Protection
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
94
101
.
3.
Keller
,
J. B.
, 1986, “
Impact With Friction
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
1
4
.
4.
Brach
,
R. M.
, 1989, “
Rigid-Body Collision
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
133
139
.
5.
Stronge
,
W. J.
, 1990, “
Rigid-Body Collision With Friction
,”
Proc. R. Soc. London, Ser. A
1364-5021
431
, pp.
169
181
.
6.
Stewart
,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
0036-1445,
42
, pp.
3
39
.
7.
Gilardi
,
G.
, and
Sharf
,
I.
, 2002, “
Literature Survey of Contact Dynamics Modeling
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
11213
11239
.
8.
Wang
,
Y.
, and
Mason
,
M. T.
, 1992, “
Two-Dimensional Rigid-Body Collisions With Friction
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
635
642
.
9.
Rismantab-Sany
,
J.
, and
Shabana
,
A. A.
, 1988, “
Impulsive Motion of Non-Holonomic Deformable Multibody Systems, Part I: Kinematic and Dynamic Equations
,”
J. Sound Vib.
0022-460X,
127
, pp.
193
204
.
10.
Shabana
,
A. A.
, and
Rismantab-Sany
,
J.
, 1988, “
Impulsive Motion of Non-Holonomic Deformable Multibody Systems, Part II: Impact Analysis
,”
J. Sound Vib.
0022-460X,
127
, pp.
205
219
.
11.
Neimark
,
Ju. I.
, and
Fufaev
,
N. A.
, 1972 “
Dynamics of Nonholonomic Systems
,” American Mathematical Society.
12.
Schatzman
,
M.
, 1973, “
Sue une Classe de Problémes Hyperboliques Nonlinéaires
,”
0002-3264,
277
, pp.
A671
A674
.
13.
Moreau
,
J.-J.
, 1979, “
Application of Convex Analysis to Some Problems of Dry Friction
,” in Trends in Applications of Pure Mathematics to Mechanics, Vol. II (2nd Sympos., Kozubnik, 1977), Monogr. Stud. Math. 5, Pitman, Boston, pp.
263
280
.
14.
Duvaut
,
G.
, and
Lions
,
J.-L.
, 1976,
Inequalities in Mechanics and Physics, Grundlehren Math. Wiss. 219
,
Springer-Verlag
, Berlin, Heidelberg, New York.
15.
Lötstedt
,
P.
, 1981, “
Coulomb Friction in Two-Dimensional Rigid-Body Systems
,”
Z. Angew. Math. Mech.
0044-2267,
61
, pp.
605
615
.
16.
Stewart
,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
0036-1445,
42
(
1
), pp.
3
39
.
17.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
, 1996, “
A Critical Study of the Applicability of Rigid-Body Collision Theory
,”
ASME J. Appl. Mech.
0021-8936,
63
, pp.
307
316
.
18.
Yigit
,
A.
,
Ulsoy
,
A.
, and
Scott
,
R.
, 1990, “
Dynamics of Radially Rotating Beam With Impact, Part 1: Theoretical and Computational Model
,”
J. Vibr. Acoust.
0739-3717,
12
, pp.
65
70
.
19.
Wu
,
J.
,
Song
,
G.
,
Yeh
,
C.
, and
Waytt
,
K.
, 1998, “
Drop/Impact Simulation and Test Validation of Telecommunication Products
,” InterSociety Conference on Thermal Phenomena, IEEE, pp.
330
336
.
20.
Tee
,
T.
,
Ng
,
H.
,
Lim
,
C.
,
Pek
,
E.
, and
Zhong
,
Z.
, 2002, “
Application of Drop Test Simulation Inelectronic Packaging. ANSYS Conference
,” Nov. 5–6.
21.
Pfeiffer
,
F.
, and
Glocker
,
Ch.
, 2000, “
Contacts in Multibody Systems
,”
J. Appl. Math. Mech.
0021-8928,
64
, pp.
773
782
.
22.
Pfeiffer
,
F.
, 2003, “
The Idea of Complementarity in Multibody Dynamics
,”
Arch. Appl. Mech.
0939-1533,
72
, pp.
8097
816
.
23.
Glocker
,
Ch.
, and
Pfeiffer
,
F.
, 1995, “
Multiple Impacts With Friction in Rigid Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
7
, pp.
471
497
.
24.
Shabana
,
A. A.
, 2000,
Computational Dynamics
, 2nd ed.,
Wiley
, New York.
25.
Shu
,
C. W.
, and
Osher
,
S.
, 1988, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
0021-9991,
75
, pp.
439
471
.
26.
Hunt
,
K. H.
, and
Grossley
,
F. R. E.
, 1975, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
440
445
.
27.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
, 1987, “
A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems
,”
Mech. Mach. Theory
0094-114X,
22
, pp.
213
224
.
28.
Quercetti
,
T.
,
Ballheimer
,
V.
, and
Wieser
,
G.
, 2002, “
Analytical, Numerical, and Experimental Investigations on the Impact Behaviour of Packagings for the Transport of Radioactive Material Under Slap Down Conditions
,”
J. Nucl. Mater.
0022-3115,
XXX
(
3
), pp.
18
25
.