Abstract

Deep learning-based image segmentation methods have showcased tremendous potential in defect detection applications for several manufacturing processes. Currently, majority of deep learning research for defect detection focuses on manufacturing processes where the defects have well-defined features and there is tremendous amount of image data available to learn such a data-dense model. This makes deep learning unsuitable for defect detection in high-mix low volume manufacturing applications where data are scarce and the features of defects are not well defined due to the nature of the process. Recently, there has been an increased impetus towards automation of high-performance manufacturing processes such as composite prepreg layup. Composite prepreg layup is high-mix low volume in nature and involves manipulation of a sheet-like material. In this work, we propose a deep learning framework to detect wrinkle-like defects during the composite prepreg layup process. Our work focuses on three main technological contributions: (1) generation of physics aware photo-realistic synthetic images with the combination of a thin-shell finite element-based sheet simulation and advanced graphics techniques for texture generation, (2) an open-source annotated dataset of 10,000 synthetic images and 1000 real process images of carbon fiber sheets with wrinkle-like defects, and (3) an efficient two-stage methodology for training the deep learning network on this hybrid dataset. Our method can achieve a mean average precision (mAP) of 0.98 on actual production data for detecting defects.

References

1.
Jie
,
L.
,
Siwei
,
L.
,
Qingyong
,
L.
,
Hanqing
,
Z.
, and
Shengwei
,
R.
,
2009
, “
Real-Time Rail Head Surface Defect Detection: A Geometrical Approach
,”
IEEE International Symposium on Industrial Electronics
,
Seoul, South Korea
,
July 5–8
, pp.
769
774
.
2.
Cui
,
Y.
,
Jin
,
J. S.
,
Luo
,
S.
,
Park
,
M.
, and
Au
,
S. S.
,
2009
, “
Automated Pattern Recognition and Defect Inspection System
,”
Fifth International Conference on Image and Graphics
,
Shanxi, China
,
Sept. 20–23
,
3.
Iivarinen
,
J.
,
2000
, “
Surface Defect Detection With Histogram-Based Texture Features
,” SPIE Optics East.
4.
Xue-wu
,
Z.
,
Yan-qiong
,
D.
,
Yan-yun
,
L.
,
Ai-ye
,
S.
, and
Rui-yu
,
L.
,
2011
, “
A Vision Inspection System for the Surface Defects of Strongly Reflected Metal Based on Multi-Class SVM
,”
Exp. Syst. Appl.
,
38
(
5
), pp.
5930
5939
.
5.
Masci
,
J.
,
Meier
,
U.
,
Ciresan
,
D.
,
Schmidhuber
,
J.
, and
Fricout
,
G.
,
2012
, “
Steel Defect Classification With Max-Pooling Convolutional Neural Networks
,”
The 2012 International Joint Conference on Neural Networks (IJCNN)
,
Brisbane, Australia
,
June 10–15
, pp.
1
6
.
6.
Yun
,
J. P.
,
Choi
,
S.
, and
Kim
,
S. W.
,
2008
, “
Detection of Line Defects in Steel Billets Using Undecimated Wavelet Transform
,”
2008 International Conference on Control, Automation and Systems
, Seoul, South Korea, Oct. 14–17, pp.
1725
1728
.
7.
Aziz
,
M. A.
,
Haggag
,
A. S.
, and
Sayed
,
M. S.
,
2013
, “
Fabric Defect Detection Algorithm Using Morphological Processing and DCT
,”
2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA)
, pp.
1
4
.
8.
Mei
,
H.
,
Jiang
,
H.
,
Yin
,
F.
,
Wang
,
L.
, and
Farzaneh
,
M.
,
2021
, “
Terahertz Imaging Method for Composite Insulator Defects Based on Edge Detection Algorithm
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
10
.
9.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
,
Thakar
,
S.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Image-Based Surface Defect Detection Using Deep Learning: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
040801
.
10.
He
,
Y.
,
Song
,
K.
,
Meng
,
Q.
, and
Yan
,
Y.
,
2020
, “
An End-to-End Steel Surface Defect Detection Approach Via Fusing Multiple Hierarchical Features
,”
IEEE Trans. Instrum. Meas.
,
69
(
4
), pp.
1493
1504
.
11.
Li
,
F.
,
Li
,
F.
, and
Xi
,
Q.
,
2021
, “
Defectnet: Toward Fast and Effective Defect Detection
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
9
.
12.
Xu
,
L.
,
Lv
,
S.
,
Deng
,
Y.
, and
Li
,
X.
,
2020
, “
A Weakly Supervised Surface Defect Detection Based on Convolutional Neural Network
,”
IEEE Access
,
8
, pp.
42285
42296
.
13.
Sreedhar
,
U.
,
Krishnamurthy
,
C.
,
Balasubramaniam
,
K.
,
Raghupathy
,
V.
, and
Ravisankar
,
S.
,
2012
, “
Automatic Defect Identification Using Thermal Image Analysis for Online Weld Quality Monitoring
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1557
1566
.
14.
Manyar
,
O. M.
,
Junyan
,
C.
,
Levine
,
R.
,
Krishnan
,
V.
,
Barbic
,
J.
, and
Gupta
,
S. K.
,
2022
, “
A Synthetic Image Assisted Deep Learning Framework for Detecting Defects During Composite Prepreg Layup
,”
ASMEs 2022 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
15.
Li
,
Y.
,
Cheng
,
Y.
,
Gan
,
Z.
,
Yu
,
L.
,
Wang
,
L.
, and
Liu
,
J.
,
2020
, “
Bachgan: High-Resolution Image Synthesis From Salient Object Layout
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Seattle, WA
,
June 13–19
.
16.
Tremblay
,
J.
,
Prakash
,
A.
,
Acuna
,
D.
,
Brophy
,
M.
,
Jampani
,
V.
,
Anil
,
C.
,
To
,
T.
,
Cameracci
,
E.
,
Boochoon
,
S.
, and
Birchfield
,
S.
,
2018
, “
Training Deep Networks With Synthetic Data: Bridging the Reality Gap by Domain Randomization
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
,
Salt Lake, City, UT
,
June 18–13
pp.
969
977
.
17.
Lin
,
J.
,
Zhang
,
R.
,
Ganz
,
F.
,
Han
,
S.
, and
Zhu
,
J.-Y.
,
2021
, “
Anycost Gans for Interactive Image Synthesis and Editing
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Nashville, TN
,
June 20–25
, pp.
14986
14996
.
18.
Schraml
,
D.
,
2019
, “
Physically Based Synthetic Image Generation for Machine Learning: A Review of Pertinent Literature
,”
Photonics and Education in Measurement Science 2019
,
B.
,
Zagar
,
P.
,
Mazurek
,
M.
,
Rosenberger
, and
P.-G.
,
Dittrich
, eds,
SPIE
.
19.
Figueira
,
A.
, and
Vaz
,
B.
,
2022
, “
Survey on Synthetic Datageneration, Evaluation Methods and Gans
,”
Mathematics
,
10
(
15
), p.
2733
.
20.
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Kabir
,
A. M.
,
Bhatt
,
P. M.
,
Shah
,
B.
,
Zanio
,
S.
,
Nutt
,
S.
, and
Gupta
,
S. K.
,
2021
, “
Automated Planning for Robotic Layup of Composite Prepreg
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
102020
.
21.
He
,
K.
,
Gkioxari
,
G.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2017
, “
Mask R-CNN
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
, pp.
2980
2988
.
22.
Kusano
,
M.
,
Hatano
,
H.
,
Watanabe
,
M.
,
Takekawa
,
S.
,
Yamawaki
,
H.
,
Oguchi
,
K.
, and
Enoki
,
M.
,
2018
, “
Mid-Infrared Pulsed Laser Ultrasonic Testing for Carbon Fiber Reinforced Plastics
,”
Ultrasonics
,
84
, pp.
310
318
.
23.
Elrefai
,
A. L.
, and
Sasada
,
I.
,
2016
, “
Magnetic Particle Detection System Using Fluxgate Gradiometer on a Permalloy Shielding Disk
,”
IEEE Mag. Lett.
,
7
, pp.
1
4
.
24.
D’Angelo
,
G.
,
Laracca
,
M.
,
Rampone
,
S.
, and
Betta
,
G.
,
2018
, “
Fast Eddy Current Testing Defect Classification Using Lissajous Figures
,”
IEEE Trans. Instrum. Meas.
,
67
(
4
), pp.
821
830
.
25.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2018
, “
Hybrid Cells for Multi-Layer Prepreg Composite Sheet Layup
,”
IEEE International Conference on Automation Science and Engineering (CASE)
,
Munich, Germany
,
Aug. 20–24
.
26.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2019
, “
Identifying Feasible Workpiece Placement With Respect to Redundant Manipulator for Complex Manufacturing Tasks
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
.
27.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2019
, “
Determining Feasible Robot Placements in Robotic Cells for Composite Prepreg Sheet Layup
,”
ASMEs 14th Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14
.
28.
Chen
,
Y.
,
Joseph
,
R. J.
,
Kanyuck
,
A.
,
Khan
,
S.
,
Malhan
,
R. K.
,
Manyar
,
O. M.
,
McNulty
,
Z.
,
Wang
,
B.
,
Barbic
,
J.
, and
Gupta
,
S. K.
,
2021
, “
A Digital Twin for Automated Layup of Prepreg Composite Sheets
,”
ASMEs 16th Manufacturing Science and Engineering Conference
,
Virtual, Online
,
June 21–25
.
29.
Manyar
,
O. M.
,
Desai
,
J.
,
Deogaonkar
,
N.
,
Joesph
,
R. J.
,
Malhan
,
R.
,
McNulty
,
Z.
,
Wang
,
B.
,
Barbič
,
J.
, and
Gupta
,
S. K.
,
2021
, “
A Simulation-Based Grasp Planner for Enabling Robotic Grasping During Composite Sheet Layup
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
930
937
.
30.
Elkington
,
M.
,
Almas
,
E.
,
Ward-Cherrier
,
B.
,
Pestell
,
N.
,
Lloyd
,
J.
,
Ward
,
C.
, and
Lepora
,
N.
,
2021
, “
Real Time Defect Detection During Composite Layup Via Tactile Shape Sensing
,”
Sci. Eng. Comput. Mater.
,
28
(
1
), pp.
1
10
.
31.
Kumar
,
A.
,
2008
, “
Computer-Vision-Based Fabric Defect Detection: A Survey
,”
IEEE Trans. Ind. Electron.
,
55
(
1
), pp.
348
363
.
32.
Hu
,
C.
, and
Wang
,
Y.
,
2019
, “
An Efficient Convolutional Neural Network Model Based on Object-Level Attention Mechanism for Casting Defect Detection on Radiography Images
,”
IEEE Trans. Ind. Electron.
,
67
, pp.
10922
10930
.
33.
Wang
,
T.
,
Chen
,
Y.
,
Qiao
,
M.
, and
Snoussi
,
H.
,
2018
, “
A Fast and Robust Convolutional Neural Network-Based Defect Detection Model in Product Quality Control
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9
), pp.
3465
3471
.
34.
Tabernik
,
D.
,
Šela
,
S.
,
Skvarč
,
J.
, and
Skočaj
,
D.
,
2020
, “
Segmentation-Based Deep-Learning Approach for Surface-Defect Detection
,”
J. Intell. Manuf.
,
31
(
3
), pp.
759
776
.
35.
Wang
,
S.
,
Xia
,
X.
,
Ye
,
L.
, and
Yang
,
B.
,
2021
, “
Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional Neural Networks
,”
Metals
,
11
(
3
), p.
388
.
36.
Rudolph
,
M.
,
Wandt
,
B.
, and
Rosenhahn
,
B.
,
2020
, “
Same Same But Different: Semi-Supervised Defect Detection With Normalizing Flows
,” CoRR, abs/2008.12577.
37.
Yang
,
J.
,
Li
,
S.
,
Wang
,
Z.
,
Dong
,
H.
,
Wang
,
J.
, and
Tang
,
S.
,
2020
, “
Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges
,”
Materials
,
13
(
24
), p.
5755
.
38.
Xu
,
X.
,
Zheng
,
H.
,
Guo
,
Z.
,
Wu
,
X.
, and
Zheng
,
Z.
,
2019
, “
Sdd-cnn: Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection
,”
Appl. Sci.
,
9
(
7
), p.
1364
.
39.
Zhao
,
Z.
,
Li
,
B.
,
Dong
,
R.
, and
Zhao
,
P.
,
2018
,
A Surface Defect Detection Method Based on Positive Samples
, Lecture Notes in Computer Science,
Springer International Publishing
, pp.
473
481
.
40.
Chow
,
J.
,
Su
,
Z.
,
Wu
,
J.
,
Tan
,
P.
,
Mao
,
X.
, and
Wang
,
Y.
,
2020
, “
Anomaly Detection of Defects on Concrete Structures With the Convolutional Autoencoder
,”
Adv. Eng. Inform.
,
45
, p.
101105
.
41.
Li
,
Y.
,
Zhao
,
W.
, and
Pan
,
J.
,
2017
, “
Deformable Patterned Fabric Defect Detection With Fisher Criterion-Based Deep Learning
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
2
), pp.
1256
1264
.
42.
Meister
,
S.
,
Möller
,
N.
,
Stüve
,
J.
, and
Groves
,
R. M.
,
2021
, “
Synthetic Image Data Augmentation for Fibre Layup Inspection Processes: Techniques to Enhance the Data Set
,”
J. Intell. Manuf.
,
32
(
6
), pp.
1767
1789
.
43.
Sin
,
F. S.
,
Schroeder
,
D.
, and
Barbič
,
J.
,
2013
, “
Vega: Nonlinear FEM Deformable Object Simulator
,”
Comput. Graph.
,
32
(
1
), pp.
38
50
.
44.
Community
,
B. O.
,
2018
,
Blender—A 3D Modelling and Rendering Package
,
Stichting Blender Foundation
,
Amsterdam
.
45.
Simonyan
,
K.
,
Zisserman
,
A.
,
Y.
,
Bengio
, and
Y.
,
LeCun
,
2015
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
3rd International Conference on Learning Representations, ICLR
,
San Diego, CA
,
May 7–9
.
46.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
,
2015
, “
Going Deeper With Convolutions
,”
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Boston, MA
,
June 7–12
, pp.
1
9
.
47.
Huang
,
G.
,
Liu
,
Z.
,
van der Maaten
,
L.
, and
Weinberger
,
K. Q.
,
2017
, “
Densely Connected Convolutional Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26.
48.
Lin
,
T.-Y.
,
Dollár
,
P.
,
Girshick
,
R.
,
He
,
K.
,
Hariharan
,
B.
, and
Belongie
,
S.
,
2017
, “
Feature Pyramid Networks for Object Detection
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp.
936
944
.
49.
Lin
,
T.-Y.
,
Maire
,
M.
,
Belongie
,
S.
,
Hays
,
J.
,
Perona
,
P.
,
Ramanan
,
D.
,
Dollár
,
P.
, and
Zitnick
,
C. L.
,
2014
,
Microsoft Coco: Common Objects in Context
, Computer Vision—ECCV 2014,
Springer International Publishing
, pp.
740
755
.
50.
Chen
,
K.
,
Wang
,
J.
,
Pang
,
J.
,
Cao
,
Y.
,
Xiong
,
Y.
,
Li
,
X.
,
Sun
,
S.
, et al.,
2019
, “
MMDetection: Open MMLab Detection Toolbox and Benchmark
,” preprint arXiv:1906.07155.
51.
Tzeng
,
E.
,
Devin
,
C.
,
Hoffman
,
J.
,
Finn
,
C.
,
Abbeel
,
P.
,
Levine
,
S.
,
Saenko
,
K.
, and
Darrell
,
T.
,
2020
, “Adapting Deep Visuomotor Representations With Weak Pairwise Constraints,”
Algorithmic Foundations of Robotics XII
,
Springer
, pp.
688
703
.
52.
Pashevich
,
A.
,
Strudel
,
R.
,
Kalevatykh
,
I.
,
Laptev
,
I.
, and
Schmid
,
C.
,
2019
, “
Learning to Augment Synthetic Images for Sim2Real Policy Transfer
,” CoRR, abs/1903.07740.
53.
Sajjan
,
S.
,
Moore
,
M.
,
Pan
,
M.
,
Nagaraja
,
G.
,
Lee
,
J.
,
Zeng
,
A.
, and
Song
,
S.
,
2020
, “
Clear Grasp: 3D Shape Estimation of Transparent Objects for Manipulation
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
3634
3642
.
54.
Everingham
,
M.
,
Van Gool
,
L.
,
Williams
,
C. K. I.
,
Winn
,
J.
, and
Zisserman
,
A.
,
2010
, “
The Pascal Visual Object Classes (VOC) Challenge
,”
Int. J. Comput. Vis.
,
88
(
2
), pp.
303
338
.
55.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
, et al.,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
Advances in Neural Information Processing Systems 32
,
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché-Buc
,
E.
Fox
, and
R.
Garnett
, eds,
Curran Associates, Inc.
, pp.
8024
8035
.
56.
Zhang
,
H.
,
Wu
,
C.
,
Zhang
,
Z.
,
Zhu
,
Y.
,
Lin
,
H.
,
Zhang
,
Z.
,
Sun
,
Y.
,
He
,
T.
,
Mueller
,
J.
,
Manmatha
,
R.
,
Li
,
M.
, and
Smola
,
A.
,
2022
, “
ResNeSt: Split-Attention Networks
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
,
New Orleans, LA, USA
,
June 19-20 2022
.
57.
Cai
,
Z.
, and
Vasconcelos
,
N.
,
2021
, “
Cascade R-CNN: High Quality Object Detection and Instance Segmentation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
5
), pp.
1483
1498
.
58.
Ganaie
,
M. A.
,
Hu
,
M.
,
Tanveer
,
M.
, and
Suganthan
,
P. N.
,
2021
, “
Ensemble Deep Learning: A Review
,” CoRR, abs/2104.02395.
59.
Pan
,
J.
,
Dong
,
J.
,
Liu
,
Y.
,
Zhang
,
J.
,
Ren
,
J.
,
Tang
,
J.
,
Tai
,
Y.-W.
, and
Yang
,
M.-H.
,
2021
, “
Physics-Based Generative Adversarial Models for Image Restoration and Beyond
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
7
), pp.
2449
2462
.
60.
Hoyer
,
L.
,
Dai
,
D.
,
Chen
,
Y.
,
Koring
,
A.
,
Saha
,
S.
, and
Van Gool
,
L.
,
2021
, “
Three Ways to Improve Semantic Segmentation With Self-Supervised Depth Estimation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Nashville, TN
,
June 20–25
, pp.
11130
11140
.
61.
Ibrahim
,
M. S.
,
Vahdat
,
A.
,
Ranjbar
,
M.
, and
Macready
,
W. G.
,
2020
, “
Semi-Supervised Semantic Image Segmentation With Self-Correcting Networks
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Seattle, WA
,
June 14–19
, pp.
12715
12725
.
You do not currently have access to this content.