Abstract

Prognostic and health management (PHM) has become increasingly popular due to the requirement of improved maintenance techniques in the industry. Remaining useful life (RUL) estimation is an important parameter through which PHM can be utilized to implement timely and cost-effective maintenance. Due to recent advancements in sensor-based and other Industry 4.0 related technologies, data-driven methods for RUL estimation have become more prevalent and effective. In this paper, a novel data-driven method for sensor-based RUL estimation using a combination of multi-scale convolutional neural network (MS-CNN) and long short-term memory (LSTM) is proposed. The proposed hybrid multi-scale convolutional LSTM (HMCL) model is capable of extracting both spatial features of various scales and temporal features from the input data to provide accurate RUL predictions. L2 regularization and dropout techniques are used to reduce overfitting. The performance of the proposed model is evaluated using the C-MAPSS dataset. It achieves excellent performance as compared to other state-of-the-art methods making it a promising approach for sensor-based RUL prediction. Additionally, to discern the cause for occurrence of offsets, i.e., deviations in the model’s predictions with the true RUL value, an offset analysis is carried out. Through the analysis, an estimate on the location and cause of offsets is established and based on the sensory input data, offsets are identified using an SVM classification model. Despite being a simple classification model, it is able to achieve a decent performance in classifying the offsets.

References

1.
Chen
,
B.
,
Wan
,
J.
,
Shu
,
L.
,
Li
,
P.
,
Mukherjee
,
M.
, and
Yin
,
B.
,
2017
, “
Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges
,”
IEEE Access
,
6
, pp.
6505
6519
.
2.
Li
,
Z.
,
Wang
,
Y.
, and
Wang
,
K.-S.
,
2017
, “
Intelligent Predictive Maintenance for Fault Diagnosis and Prognosis in Machine Centers: Industry 4.0 Scenario
,”
Adv. Manuf.
,
5
(
4
), pp.
377
387
.
3.
Wang
,
J.
,
Zhang
,
L.
,
Duan
,
L.
, and
Gao
,
R. X.
,
2017
, “
A New Paradigm of Cloud-Based Predictive Maintenance for Intelligent Manufacturing
,”
J. Intell. Manuf.
,
28
(
5
), pp.
1125
1137
.
4.
Zhang
,
W.
,
Yang
,
D.
, and
Wang
,
H.
,
2019
, “
Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey
,”
IEEE Syst. J.
,
13
(
3
), pp.
2213
2227
.
5.
Zonta
,
T.
,
da Costa
,
C. A.
,
da Rosa Righi
,
R.
,
de Lima
,
M. J.
,
da Trindade
,
E. S.
, and
Li
,
G. P.
,
2020
, “
Predictive Maintenance in the Industry 4.0: A Systematic Literature Review
,”
Comput. Industrial Eng.
,
150
, p.
106889
.
6.
Xia
,
M.
,
Zheng
,
X.
,
Imran
,
M.
, and
Shoaib
,
M.
,
2020
, “
Data-Driven Prognosis Method Using Hybrid Deep Recurrent Neural Network
,”
Appl. Soft. Comput.
,
93
, p.
106351
.
7.
Li
,
X.
,
Ding
,
Q.
, and
Sun
,
J.-Q.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks
,”
Reliab. Eng. Syst. Saf.
,
172
, pp.
1
11
.
8.
Mahamad
,
A. K.
,
Saon
,
S.
, and
Hiyama
,
T.
,
2010
, “
Predicting Remaining Useful Life of Rotating Machinery Based Artificial Neural Network
,”
Comput. Math. Appl.
,
60
(
4
), pp.
1078
1087
.
9.
Phillips
,
J.
,
Cripps
,
E.
,
Lau
,
J. W.
, and
Hodkiewicz
,
M.
,
2015
, “
Classifying Machinery Condition Using Oil Samples and Binary Logistic Regression
,”
Mech. Syst. Signal. Process.
,
60
, pp.
316
325
.
10.
Gebraeel
,
N.
,
Lawley
,
M.
,
Liu
,
R.
, and
Parmeshwaran
,
V.
,
2004
, “
Residual Life Predictions From Vibration-Based Degradation Signals: A Neural Network Approach
,”
IEEE Trans. Ind. Electron.
,
51
(
3
), pp.
694
700
.
11.
das Chagas Moura
,
M.
,
Zio
,
E.
,
Lins
,
I. D.
, and
Droguett
,
E.
,
2011
, “
Failure and Reliability Prediction by Support Vector Machines Regression of Time Series Data
,”
Reliab. Eng. Syst. Saf.
,
96
(
11
), pp.
1527
1534
.
12.
Saxena
,
A.
,
Goebel
,
K.
,
Simon
,
D.
, and
Eklund
,
N.
,
2008
, “
Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation
,”
2008 International Conference on Prognostics and Health Management
,
Denver, CO
,
Oct. 6–9
, IEEE, pp.
1
9
.
13.
Anantharaman
,
P.
,
Qiao
,
M.
, and
Jadav
,
D.
,
2018
, “
Large Scale Predictive Analytics for Hard Disk Remaining Useful Life Estimation
,”
2018 IEEE International Congress on Big Data (BigData Congress 2018)
,
San Francisco, CA
,
July 2–7
, IEEE, pp.
251
254
.
14.
Laredo
,
D.
,
Chen
,
Z.
,
Schütze
,
O.
, and
Sun
,
J.-Q.
,
2019
, “
A Neural Network-Evolutionary Computational Framework for Remaining Useful Life Estimation of Mechanical Systems
,”
Neural Netw.
,
116
, pp.
178
187
.
15.
Li
,
H.
,
Zhao
,
W.
,
Zhang
,
Y.
, and
Zio
,
E.
,
2020
, “
Remaining Useful Life Prediction Using Multi-Scale Deep Convolutional Neural Network
,”
Appl. Soft. Comput.
,
89
, p.
106113
.
16.
Ellefsen
,
A. L.
,
Bjørlykhaug
,
E.
,
Æsøy
,
V.
,
Ushakov
,
S.
, and
Zhang
,
H.
,
2019
, “
Remaining Useful Life Predictions for Turbofan Engine Degradation Using Semi-Supervised Deep Architecture
,”
Reliab. Eng. Syst. Saf.
,
183
, pp.
240
251
.
17.
Zheng
,
S.
,
Ristovski
,
K.
,
Farahat
,
A.
, and
Gupta
,
C.
,
2017
, “
Long Short-Term Memory Network for Remaining Useful Life Estimation
,”
2017 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Dallas, TX
,
June 19–21
, IEEE, pp.
88
95
.
18.
Da Costa
,
P. R. D. O.
,
Akcay
,
A.
,
Zhang
,
Y.
, and
Kaymak
,
U.
,
2019
, “
Attention and Long Short-Term Memory Network for Remaining Useful Lifetime Predictions of Turbofan Engine Degradation
,”
Int. J. Prognostics Health Management
,
10
(
4
), pp.
1
12
.
19.
Ren
,
L.
,
Qin
,
H.
,
Xie
,
Z.
,
Li
,
B.
, and
Xu
,
K.
,
2022
, “
Aero-Engine Remaining Useful Life Estimation Based on Multi-head Networks
,”
IEEE Trans. Instrum. Measurement
,
71
, pp.
1
10
.
20.
Song
,
Y.
,
Gao
,
S.
,
Li
,
Y.
,
Jia
,
L.
,
Li
,
Q.
, and
Pang
,
F.
,
2020
, “
Distributed Attention-Based Temporal Convolutional Network for Remaining Useful Life Prediction
,”
IEEE Internet J.
,
8
(
12
), pp.
9594
9602
.
21.
Wang
,
J.
,
Wen
,
G.
,
Yang
,
S.
, and
Liu
,
Y.
,
2018
, “
Remaining Useful Life Estimation in Prognostics Using Deep Bidirectional LSTM Neural Network
,”
2018 Prognostics and System Health Management Conference (PHM-Chongqing)
,
Chongqing, China
,
Oct. 26–28
, IEEE, pp.
1037
1042
.
22.
Hong
,
C. W.
,
Lee
,
C.
,
Lee
,
K.
,
Ko
,
M. -S.
,
Kim
,
D. E.
, and
Hur
,
K.
,
2020
, “
Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks With Dimensionality Reduction
,”
Sensors
,
20
(
22
), p.
6626
.
23.
Wang
,
B.
,
Lei
,
Y.
,
Li
,
N.
, and
Wang
,
W.
,
2020
, “
Multiscale Convolutional Attention Network for Predicting Remaining Useful Life of Machinery
,”
IEEE Trans. Ind. Electron.
,
68
(
8
), pp.
7496
7504
.
24.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammadi
,
A.
,
2019
, “
Hybrid Deep Neural Network Model for Remaining Useful Life Estimation
,”
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Brighton, UK
,
May 12–17
, IEEE, pp.
3872
3876
.
25.
Xue
,
B.
,
Xu
,
Z.-B.
,
Huang
,
X.
, and
Nie
,
P.-C.
,
2021
, “
Data-Driven Prognostics Method for Turbofan Engine Degradation Using Hybrid Deep Neural Network
,”
J. Mech. Sci. Technol.
,
35
(
12
), pp.
5371
5387
.
26.
Hou
,
G.
,
Xu
,
S.
,
Zhou
,
N.
,
Yang
,
L.
, and
Fu
,
Q.
,
2020
, “
Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on An Autoencoder Scheme
,”
Comput. Intell. Neurosci.
,
2020
, pp.
1
14
.
27.
Li
,
J.
,
Li
,
X.
, and
He
,
D.
,
2019
, “
A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction
,”
IEEE Access
,
7
, pp.
75464
75475
.
28.
Zhao
,
C.
,
Huang
,
X.
,
Li
,
Y.
, and
Li
,
S.
,
2021
, “
A Novel CAP-LSTM Model for Remaining Useful Life Prediction
,”
IEEE Sensors J.
,
21
(
20
), pp.
23498
23509
.
29.
Greff
,
K.
,
Srivastava
,
R. K.
,
Koutník
,
J.
,
Steunebrink
,
B. R.
, and
Schmidhuber
,
J.
,
2016
, “
LSTM: A Search Space Odyssey
,”
IEEE Trans. Neural Netw. Learning Syst.
,
28
(
10
), pp.
2222
2232
.
30.
Ying
,
X.
,
2019
, “
An Overview of Overfitting and Its Solutions
,”
J. Phys. Conf. Ser.
,
1168
, p.
022022
.
31.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Machine Learning Res.
,
15
(
1
), pp.
1929
1958
.
32.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A method for stochastic optimization
,” arXiv preprint arXiv:1412.6980.
You do not currently have access to this content.