Abstract

Optimizing dynamic engineering systems (DESs) is quite challenging due to the increasing pursuit of automation and intelligence in modern industry. However, most of the existing studies generally only focus on plant variables or control variables of DESs, which may fail to explore optimal solutions. In this paper, a novel minimum-control-trajectory-deviation (MCTD) time grid reconstruction strategy is presented for the co-design approach. Three co-design approaches, namely simultaneous, nested, and direct transcription quadratic programming (DTQP) are compared using the MCTD time grid reconstruction strategy. Considering a number of design variables are time-varying in practical dynamic systems, three co-design methods use a special class of numerical analysis methods known as direct transcription (DT) that implies a “discretize-then-optimize” process. Motivated by the inefficiency of the traditional uniform discrete strategy, an MCTD time grid reconstruction strategy is proposed. Combining the presented time grid reconstruction strategy, simultaneous, nested, and DTQP methods are implemented for three test problems. The MCTD time grid reconstruction strategy is verified through a mathematical example, the Van der Pol oscillator, and a machine tool case. All cases have proved the superiority of presented strategy in running cost and solution accuracy.

References

1.
Ryberg
,
A. B.
,
Bäckryd
,
R. D.
, and
Nilsson
,
L.
,
2015
, “
A Metamodel-Based Multidisciplinary Design Optimization Process for Automotive Structures
,”
Eng. Comput.
,
31
(
4
), pp.
711
728
.
2.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2016
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
15
27
.
3.
Yang
,
J. W.
,
Wu
,
Z. P.
,
Wang
,
W. J.
,
Zhang
,
W. H.
,
Zhao
,
H. L.
, and
Sun
,
J. B.
,
2022
, “
A Surrogate-Based Optimization Method for Mixed-Variable Aircraft Design
,”
Eng. Optimiz.
,
54
(
1
), pp.
113
133
.
4.
Geyer
,
P.
,
2009
, “
Component-Oriented Decomposition for Multidisciplinary Design Optimization in Building Design
,”
Adv. Eng. Inform.
,
23
(
1
), pp.
12
31
.
5.
Li
,
W.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2021
, “
A New Approach to Solve Uncertain Multidisciplinary Design Optimization Based on Conditional Value at Risk
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
1
), pp.
356
368
.
6.
Li
,
W.
,
Gao
,
L.
,
Garg
,
A.
, and
Xiao
,
M.
,
2022
, “
Multidisciplinary Robust Design Optimization Considering Parameter and Metamodeling Uncertainties
,”
Eng. Comput.
,
38
(
1
), pp.
191
208
.
7.
Meng
,
D. B.
,
Yang
,
S. Y.
,
He
,
C.
,
Wang
,
H. T.
,
Lv
,
Z. Y.
,
Guo
,
Y. P.
, and
Nie
,
P.
,
2022
, “
Multidisciplinary Design Optimization of Engineering Systems Under Uncertainty: A Review
,”
Int. J. Struct. Integr.
,
13
(
4
), pp.
565
593
.
8.
Ghoreishi
,
S. F.
, and
Imani
,
M.
,
2021
, “
Bayesian Surrogate Learning for Uncertainty Analysis of Coupled Multidisciplinary Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041009
.
9.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
10.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
11.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsov
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the Amercian Control Conference
,
Arlington, VA
,
June 25–27
, pp.
1864
1869
.
12.
Herber
,
D. R.
, and
Sundarrajan
,
A. K.
, “
On the Uses of Linear-Quadratic Methods in Solving Nonlinear Dynamic Optimization Problems With Direct Transcription
,”
Proceedings of ASME 2020 International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2020-23885.
13.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2013
, “
Simultaneous Structural and Control System Design for Horizontal Axis Wind Turbines
,”
9th AIAA Multidisciplinary Design Optimization Specialist Conference
,
Boston, MA
,
Apr. 8–11
,
p. 1533
.
14.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, pp.
28
35
.
15.
Li
,
R.
,
Teo
,
K. L.
,
Wong
,
K. H.
, and
Duan
,
G. R.
,
2006
, “
Control Parameterization Enhancing Transform for Optimal Control of Switched Systems
,”
Math. Comput. Model.
,
43
(
11–12
), pp.
1393
1403
.
16.
Loxton
,
R.
,
Lin
,
Q.
, and
Teo
,
K.
,
2014
, “
Switching Time Optimization for Nonlinear Switched Systems: Direct Optimization and the Time-Scaling Transformation
,”
Pacific J. Optim.
,
10
(
3
), pp.
537
560
.
17.
Loxton
R.C.
,
Teo
,
K. L.
, and
Rehbock
,
V.
,
2008
, “
Optimal Control Problems With Multiple Characteristic Time Points in the Objective and Constraints
,”
Automatica
,
44
(
11
), pp.
2923
2929
.
18.
Schlegel
,
M.
,
Stockmann
,
K.
,
Binder
,
T.
, and
Marquardt
,
W.
,
2005
, “
Dynamic Optimization Using Adaptive Control Vector Parameterization
,”
Comput. Chem. Eng.
,
29
(
8
), pp.
1731
1751
.
19.
Wang
,
L. W.
,
Liu
,
X. G.
, and
Zhang
,
Z. Y.
,
2017
, “
A New Sensitivity-Based Adaptive Control Vector Parameterization Approach for Dynamic Optimization of Bioprocesses
,”
Bioproc. Biosyst. Eng.
,
40
(
2
), pp.
181
189
.
20.
Liu
,
P.
,
Li
,
G.
,
Liu
,
X.
, and
Zhang
,
Z.
,
2016
, “
Novel Non-Uniform Adaptive Grid Refinement Control Parameterization Approach for Biochemical Processes Optimization
,”
Biochem. Eng. J.
,
111
, pp.
63
74
.
21.
Jin
,
C.
,
Mao
,
H. P.
,
Chen
,
Y.
,
Shi
,
Q.
,
Wang
,
Q. R.
,
Ma
,
G. X.
, and
Liu
,
Y.
,
2020
, “
Engineering-Oriented Dynamic Optimal Control of a Greenhouse Environment Using an Improved Genetic Algorithm With Engineering Constraint Rules
,”
Comput. Electron Agr.
,
177
, p.
105698
.
22.
Liu
,
P.
,
Li
,
G. D.
,
Liu
,
X. G.
,
Xiao
,
L.
,
Wang
,
Y. L.
,
Yang
,
C. H.
, and
Gui
,
W. H.
,
2018
, “
A Novel Non-Uniform Control Vector Parameterization Approach With Time Grid Refinement for Flight Level Tracking Optimal Control Problems
,”
ISA T.
,
73
, pp.
66
78
.
23.
Liu
,
X. G.
,
Xiao
,
L.
,
Lv
,
L.
,
Liu
,
P.
,
Xu
,
G. Q.
,
Zheng
,
Z. Z.
, and
Wang
,
S.
,
2021
, “
Analytical Sensitivity Computation Using Collocation Method With Non-Uniform Mesh Discretisation for Numerical Solutions of Optimal Control Problems
,”
Int. J. Control
,
94
(
3
), pp.
612
622
.
24.
Xiao
,
L.
,
Liu
,
X. G.
,
Ma
,
L.
, and
Zhang
,
Z. Y.
,
2018
, “
An Effective Pseudospectral Method for Constraint Dynamic Optimisation Problems With Characteristic Times
,”
Int. J. Control
,
91
(
3
), pp.
571
581
.
25.
Deshmukh
,
A. P.
,
2013
,
“Multidisciplinary Design Optimization of DynamicSystems Using Surrogate Modeling Approach,” M.S. thesis
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
26.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
.
27.
Herber
,
D. R.
,
Lee
,
Y. H.
, and
Allison
,
J. T.
,
2022
, “
DT QP Project, GitHub
,” https://github.com/danielrherber/dt-qp-project.
28.
Herber
,
D. R.
,
2017
,
“Advances in Combined Architecture, Plant, and ControlDesign,”Ph.D. dissertation
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
29.
Herber
,
D. R.
,
2015
, “Basic Implementation of Multiple-Interval Pseudospectral Methods to Solve Optimal Control Problems”
Engineering System Design Lab
,
Urbana, IL
, Technical Report No. UIUC-ESDL-2015-01.
30.
Herber
,
D. R.
,
2014
,“
Dynamic System Design Optimization of Wave Energy Converters Utilizing Direct Transcription
,” M.S. thesis,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
31.
Foust
,
R.
,
Chung
,
S. J.
, and
Hadaegh
,
F. Y.
,
2019
, “
Solving Optimal Control With Nonlinear Dynamics Using Sequential Convex Programming
,”
Proceedings of AIAA Scitech 2019 Forum
,
San Diego, CA, United states
,
Jan. 7–11
,
p. 0652
.
32.
Chilan
,
C. M.
,
Herber
,
D. R.
,
Nakka
,
Y. K.
,
Chung
,
S. J.
,
Allison
,
J. T.
,
Aldrich
,
J. B.
, and
Alvarez-Salazar
,
O. S.
,
2017
, “
Co-Design of Strain-Actuated Solar Arrays for Spacecraft Precision Pointing and Jitter Reduction
,”
AIAA J.
,
55
(
9
), pp.
3180
3195
.
33.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2017
, “
Unified Scaling of Dynamic Optimization Design Formulations
,”
Proceedings of ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. DETC2017-67676.
34.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
, “
Reliability-Based MDSDO for Co-Design of Stochastic Dynamic Systems
,”
Proceedings of ASME 2019 International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2019-10632.
35.
Chen
,
C. S.
,
Chen
,
S. K.
, and
Chen
,
L. Y.
,
2019
, “
Disturbance Observer-Based Modeling and Parameter Identification for Synchronous Dual-Drive Ball Screw Gantry Stage
,”
IEEE-ASME T. Mech.
,
24
(
6
), pp.
2839
2849
.
36.
Yeam
,
T. I.
, and
Lee
,
D. C.
,
2021
, “
Design of Sliding-Mode Speed Controller With Active Damping Control for Single-Inverter Dual-PMSM Drive Systems
,”
IEEE T. Power Electr.
,
36
(
5
), pp.
5794
5801
.
You do not currently have access to this content.