Abstract

When dealing with inspection or reverse modeling, the problem of free-form curves and surfaces reconstruction has to be faced starting from a set of measured points. Because in point sampling the acquisition error is unavoidable, curves and surfaces fitting should be based on a rigorous diagnostic phase. We consider statistical regression analysis in which, treating error as a variable of the problem, we distinguish between the systematic behavior of measured points and noise in the reconstruction of curves and surfaces. The model we introduce for a regression based free-form reconstruction is the so-called regression spline. It is a well known model in the literature, with a consolidated theory and applications in fields such as chemical, econometric, and biomedical. Our purpose is to discuss the application of this powerful and flexible approach in a reverse modeling environment.

1.
Li
,
Y.
, and
Gu
,
P.
, 2004, “
Free-Form Surface Inspection Techniques State of the Art Review
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
1395
1417
.
2.
Vàrady
,
T.
,
Martin
,
R. R.
, and
Cox
,
J.
, 1997, “
Reverse Engineering of Geometric Models—An Introduction
,”
Comput.-Aided Des.
0010-4485,
29
, pp.
255
299
.
3.
Fang
,
L.
, and
Gossard
,
D. C.
, 1995, “
Multidimensional Curve Fitting to Unorganized Data Points by Nonlinear Minimization
,”
Comput.-Aided Des.
0010-4485,
27
(
1
), pp.
48
58
.
4.
Pottman
,
H.
, and
Randrup
,
T.
, 1998, “
Rotational and Helical Surface Approximation for Reverse Engineering
,”
Computing
0010-485X,
60
, pp.
307
322
.
5.
Levin
,
D.
, 1998, “
The Approximation Power of Moving Least-Squares
,”
Math. Comput.
0025-5718,
67
(
224
), pp.
1517
1531
.
6.
Lee
,
I. K.
, 2000, “
Curve Reconstruction from Unorganized Points
,”
Comput. Aided Geom. Des.
0167-8396,
17
, pp.
161
177
.
7.
Yang
,
X.
, 2004, “
Curve Fitting and Fairing Using Conic Splines
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
461
472
.
8.
Lin
,
H.
,
Chen
,
W.
, and
Wang
,
G.
, 2005, “
Curve Reconstruction Based on an Interval B-Spline Curve
,”
Visual Comput.
0178-2789,
21
(
6
), pp.
418
427
.
9.
Wiess
,
V.
,
Andor
,
L.
,
Renner
,
G.
, and
Varady
,
T.
, 2002, “
Advanced Surface Fitting Techniques
,”
Comput. Aided Geom. Des.
0167-8396,
19
, pp.
19
42
.
10.
Dierckx
,
P.
, 1993,
Curve and Surface Fitting With Splines
,
Oxford University Press Inc.
,
New York
.
11.
Eck
,
M.
, and
Hadenfeld
,
J.
, 1995, “
Local Energy Fairing of B-Spline Curves
,”
Computing Supplementum Geometric Modelling
,
Springer
,
New York
, Vol.
10
, pp.
129
147
.
12.
Hermann
,
T.
,
Kovàcs
,
Z.
, and
Vàrady
,
T.
, 1997, “
Special Applications in Surface Fitting
,”
Geometric Modeling: Theory and Practice
,
Springer
,
New York
, pp.
14
31
.
13.
Bajaj
,
C.
,
Bernardini
,
F.
, and
Xu
,
G.
, 1995, “
Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans
,”
Comput. Graph.
0097-8930,
29
, pp.
109
118
.
14.
Moore
,
D.
, and
Warren
,
J.
, 1991, “
Approximation of Dense Scattered Data Using Algebraic Surfaces
,”
Proceeding of the 24th Hawaii International Conference on System Sciences
, Kanuai, HI,
V.
Milutinovic
and
D.
Shriver
, eds.,
IEEE Comp. Soc. Press
, pp.
681
690
.
15.
Wilhelm
,
R. G.
,
Hocken
,
R.
, and
Schwenke
,
H.
, 2001, “
Task Specific Uncertainty in Coordinate Measurements
,”
CIRP Ann.
0007-8506,
50
(
2
), pp.
553
563
.
16.
Menq
,
C.
, and
Chen
,
F. L.
, 1996, “
Curve and Surface Approximation from CMM Measurement Data
,”
Comput. Ind. Eng.
0360-8352,
30
, pp.
211
225
.
17.
Azernikov
,
S.
, and
Fischer
,
A.
, 2004, “
Efficient Surface Reconstruction Method for Distributed CAD
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
799
808
.
18.
Alberts
,
C. P.
, 2004, “
Surface Reconstruction from Scan Path
,”
FGCS, Future Gener. Comput. Syst.
0167-739X,
20
, pp.
1285
1298
.
19.
Budak
,
I.
,
Hodolic
,
J.
, and
Sokovic
,
M.
, 2005, “
Development of Programme System for Data-Point Pre-Processing in Reverse Engineering
,”
J. Mater. Process. Technol.
0924-0136,
162–163
, pp.
730
735
.
20.
Huang
,
M. C.
, and
Tai
,
C. C.
, 2000, “
The Pre-Processing of Data Points for Curve Fitting in Reverse Engineering
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
16
, pp.
635
642
.
21.
Pottmann
,
H.
,
Leopoldseder
,
S.
, and
Hofer
,
M.
, 2004, “
Registration Without ICP
,”
Comput. Vis. Image Underst.
1077-3142,
95
, pp.
54
71
.
22.
Benkő
,
P.
,
Kós
,
G.
,
Vàrady
,
T.
,
Andor
,
L.
, and
Martin
,
R.
, 2002, “
Constrained Fitting in Reverse Engineering
,”
Comput. Aided Geom. Des.
0167-8396,
19
, pp.
173
205
.
23.
Montès
,
P.
, 1991, “
Kriging Interpolation of a Bézier Curve
,”
Comput.-Aided Des.
0010-4485,
23
(
10
), pp.
713
716
.
24.
Limaien
,
A.
, and
ElMaraghy
,
H. A.
, 1999, “
Curve and Surface Modeling With Uncertainties Using Dual Kriging
,”
J. Mech. Des.
1050-0472,
121
, pp.
249
255
.
25.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
Proceedings of the 19th Int. Conf. on Computer Graphics and Interactive Techniques
, Chicago, July 26–31, pp.
71
78
.
26.
Lartigue
,
C.
,
Contri
,
A.
, and
Bourdet
,
P.
, 2002, “
Digitised Point Quality in Relation With Point Exploitation
,”
Measurement
0263-2241,
32
, pp.
193
203
.
27.
Draper
,
N. R.
, and
Smith
,
H.
, 1998,
Applied Regression Analysis
,
Wiley
,
New York
.
28.
Montgomery
,
D. C.
, 2001,
Design and Analysis of Experiments
,
Wiley
,
New York
.
29.
Smith
,
P. L.
, 1979, “
Splines as a Useful and Convenient Statistical Tool
,”
Am. Stat.
0003-1305,
33
, pp.
57
62
.
30.
Chen
,
L. A.
, 1996, “
Bivariate Regression Splines
,”
Comput. Stat. Data Anal.
0167-9473,
21
, pp.
399
418
.
31.
Chen
,
L. A.
, 1997, “
Multivariate Regression Splines
,”
Comput. Stat. Data Anal.
0167-9473,
26
, pp.
71
82
.
32.
Montgomery
,
D. C.
,
Peck
,
E. A.
, and
Vining
,
G. G.
, 2001,
Introduction to Linear Regression
,
Wiley Interscience
,
New York
.
33.
de Boor
,
C.
, 2001,
A Practical Guide to Splines
,
Springer
,
New York
.
34.
Poirier
,
D. J.
, 1973, “
Piecewise Regression Using Cubic Splines
,”
J. Am. Stat. Assoc.
0162-1459,
68
, pp.
515
524
.
35.
Gallant
,
A. R.
, and
Fuller
,
W. A.
, 1973, “
Fitting Segmented Polynomial Regression Models Whose Join Points Have to be Estimated
,”
J. Am. Stat. Assoc.
0162-1459,
68
, pp.
144
147
.
36.
Buse
,
A.
, and
Lim
,
L.
, 1977, “
Cubic Splines as a Special Case of Restricted Least Squares (in Applications)
,”
J. Am. Stat. Assoc.
0162-1459,
72
(
357
), pp.
35
46
.
37.
Suits
,
D. B.
,
Mason
,
A.
, and
Chan
,
L.
, 1978, “
Spline Functions Fitted by Standard Methods
,”
Rev. Econ. Stat.
0034-6535,
60
, pp.
132
139
.
38.
Marsh
,
L. C.
, 1986, “
Estimating the Number and Location of Knots in Spline Regressions
,”
Journal of Applied Business Research
,
3
, pp.
60
70
.
39.
Friedman
,
J. H.
, and
Silverman
,
B. W.
, 1989, “
Flexible Parsimonious Smoothing and Additive Modelling (With Discussion)
,”
Technometrics
0040-1706,
31
, pp.
3
39
.
40.
Friedman
,
J. H.
, 1991, “
Multivariate Adaptive Regression Splines (With Discussion)
,”
Ann. Stat.
0090-5364,
19
, pp.
1
141
.
41.
Stone
,
C. J.
,
Hansen
,
M. H.
,
Kooperberg
,
C.
, and
Troung
,
Y. K.
, 1997, “
Polynomial Splines and Their Tensor Products in Extended Linear Modelling
,”
Ann. Stat.
0090-5364,
25
, pp.
1371
1470
.
42.
Lee
,
T. C. M.
, 2000, “
Regression Spline Smoothing Using the Minimum Description Length Principle
,”
Stat. Probab. Lett.
0167-7152,
48
, pp.
71
82
.
43.
Brieman
,
L.
, 1993, “
Fitting Additive Models to Regression Data
,”
Comput. Stat. Data Anal.
0167-9473,
15
, pp.
13
46
.
44.
Smith
,
M.
, and
Kohn
,
R.
, 1996, “
Nonparametric Regression Using Bayesian Variable Selection
,”
J. Econometr.
0304-4076,
75
, pp.
317
344
.
45.
Denilson
,
D.
,
Mallick
,
B.
, and
Smith
,
A.
, 1998, “
Automatic Bayesian Curve Fitting
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
60
, pp.
333
350
.
46.
Biller
,
C.
, 2000, “
Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models
,”
J. Comput. Graph. Stat.
1061-8600,
9
, pp.
122
140
.
47.
Pittman
,
J.
, 2002, “
Adaptive Splines and Genetic Algorithms
,”
J. Comput. Graph. Stat.
1061-8600,
11
(
3
), pp.
735
757
.
48.
Lee
,
C. M.
, 2002, “
On Algorithms for Ordinary Least Squares Regression Spline Fitting: A Comparative Study
,”
J. Stat. Comput. Simul.
0094-9655,
72
(
8
), pp.
647
663
.
49.
Wand
,
M. P.
, 2000, “
A Comparison of Regression Spline Smoothing Procedures
,”
Computational Statistics
,
15
, pp.
443
462
.
50.
Craven
,
P.
, and
Wahba
,
G.
, 1979, “
Smoothing Data With Spline Functions
,”
Numer. Math.
0029-599X,
31
, pp.
377
403
.
51.
Ihaka
,
R.
, and
Gentleman
,
R.
, 1996, “
R: A Language for Data Analysis and Graphics
,”
J. Comput. Graph. Stat.
1061-8600,
5
, pp.
299
314
.
You do not currently have access to this content.