Abstract
Accurate estimation of the state of health (SOH) is an important guarantee for safe and reliable battery operation. In this paper, an online method based on indirect health features (IHFs) and sparrow search algorithm fused with deep extreme learning machine (SSA-DELM) of lithium-ion batteries is proposed to estimate SOH. First, the temperature and voltage curves in the battery discharge data are acquired, and the optimal intervals are obtained by ergodic method. Discharge temperature difference at equal time intervals (DTD-ETI) and discharge time interval with equal voltage difference (DTI-EVD) are extracted as IHF. Then, the input weights and hidden layer thresholds of the DELM algorithm are optimized using SSA, and the SSA-DELM model is applied to the estimation of battery's SOH. Finally, the established model is experimentally validated using the battery data, and the results show that the method has high prediction accuracy, strong algorithmic stability, and good adaptability.