Abstract

Accurate estimation of the state of health (SOH) is an important guarantee for safe and reliable battery operation. In this paper, an online method based on indirect health features (IHFs) and sparrow search algorithm fused with deep extreme learning machine (SSA-DELM) of lithium-ion batteries is proposed to estimate SOH. First, the temperature and voltage curves in the battery discharge data are acquired, and the optimal intervals are obtained by ergodic method. Discharge temperature difference at equal time intervals (DTD-ETI) and discharge time interval with equal voltage difference (DTI-EVD) are extracted as IHF. Then, the input weights and hidden layer thresholds of the DELM algorithm are optimized using SSA, and the SSA-DELM model is applied to the estimation of battery's SOH. Finally, the established model is experimentally validated using the battery data, and the results show that the method has high prediction accuracy, strong algorithmic stability, and good adaptability.

References

1.
Tian
,
H.
,
Qin
,
P.
,
Li
,
K.
, and
Zhao
,
Z.
,
2020
, “
A Review of the State of Health for Lithium-Ion Batteries: Research Status and Suggestions
,”
J. Cleaner Prod.
,
261
, p.
120813
.
2.
Agusdinata
,
D. B.
,
Liu
,
W.
,
Eakin
,
H.
, and
Romero
,
H.
,
2018
, “
Socio-Environmental Impacts of Lithium Mineral Extraction: Towards a Research Agenda
,”
Environ. Res. Lett.
,
13
(
2
), p.
123001
.
3.
Rui
,
X.
,
Li
,
L.
, and
Tian
,
J.
,
2018
, “
Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring Methods
,”
J. Power Sources
,
405
, pp.
18
29
.
4.
Li
,
Y.
,
Abdel-Monem
,
M.
,
Gopalakrishnan
,
R.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Omar
,
N.
,
van den Bossche
,
P.
, and
Van Mierlo
,
J.
,
2018
, “
A Quick on-Line State of Health Estimation Method for Li-Ion Battery With Incremental Capacity Curves Processed by Gaussian Filter
,”
J. Power Sources
,
373
, pp.
40
53
.
5.
Ma
,
C.
,
Zhai
,
X.
,
Wang
,
Z.
,
Tian
,
M.
,
Yu
,
Q.
,
Liu
,
L.
,
Liu
,
H.
,
Wang
,
H.
, and
Yang
,
X.
,
2019
, “
State of Health Prediction for Lithium-Ion Batteries Using Multiple-View Feature Fusion and Support Vector Regression Ensemble
,”
Int. J. Mach. Learn. Cybern.
,
10
(
9
), pp.
2269
2282
.
6.
How
,
D. N. T.
,
Hannan
,
M. A.
,
Lipu
,
M. S. H.
, and
Ker
,
P. J.
,
2019
, “
State of Charge Estimation for Lithium-Ion Batteries Using Model-Based and Data-Driven Methods: A Review
,”
IEEE Access
,
7
, p.
136116
.
7.
Li
,
Y.
,
Liu
,
K.
,
Foley
,
A. M.
,
Zülke
,
A.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Van Mierlo
,
J.
, and
Hoster
,
H. E.
,
2019
, “
Data-Driven Health Estimation and Lifetime Prediction of Lithium-Ion Batteries: A Review
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109254
.
8.
Li
,
X.
,
Wang
,
Z.
,
Zhang
,
L.
,
Zou
,
C.
, and
Dorrell
,
D. D.
,
2019
, “
State-of-Health Estimation for Li-Ion Batteries by Combing the Incremental Capacity Analysis Method With Grey Relational Analysis
,”
J. Power Sources
,
410–411
, pp.
106
114
.
9.
Hossain
,
L.
,
Hannan
,
M. A.
,
Aini
,
H.
,
Hoque
,
M. M.
,
Ker
,
P. J.
,
Saad
,
M. H. M.
, and
Afida
,
A.
,
2018
, “
A Review of State of Health and Remaining Useful Life Estimation Methods for Lithium-Ion Battery in Electric Vehicles: Challenges and Recommendations
,”
J. Cleaner Prod.
,
205
, pp.
115
133
.
10.
Jin
,
X.
,
Vora
,
A.
,
Hoshing
,
V.
,
Saha
,
T.
,
Shaver
,
G.
,
Edwin
,
G. R.
,
Wasynczuk
,
O.
, and
Varigonda
,
S.
,
2017
, “
Physically-Based Reduced-Order Capacity Loss Model for Graphite Anodes in Li-Ion Battery Cells
,”
J. Power Sources
,
342
, pp.
750
761
.
11.
Zhang
,
X.
,
Wang
,
Y.
,
Liu
,
C.
, and
Chen
,
Z.
,
2018
, “
A Novel Approach of Battery Pack State of Health Estimation Using Artificial Intelligence Optimization Algorithm
,”
J. Power Sources
,
376
, pp.
191
199
.
12.
Cai
,
L.
,
Meng
,
J.
,
Stroe
,
D. I.
,
Luo
,
G.
, and
Teodorescu
,
R.
,
2019
, “
An Evolutionary Framework for Lithium-Ion Battery State of Health Estimation
,”
J. Power Sources
,
412
, pp.
615
622
.
13.
Su
,
H.
,
Yue
,
C.
, and
Qian
,
D.
,
2017
, “
Firefly-Algorithm-Inspired Framework With Band Selection and Extreme Learning Machine for Hyperspectral Image Classification
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
,
10
(
1
), pp.
309
320
.
14.
Irene
,
D. S.
,
Sethukarasi
,
T.
, and
Vadivelan
,
N.
,
2020
, “
Heart Disease Prediction Using Hybrid Fuzzy K-Medoids Attribute Weighting Method With DBN-KELM Based Regression Model
,”
Med. Hypotheses
,
143
, p.
110072
.
15.
Chakravarthy
,
S. R. S.
, and
Rajaguru
,
H.
,
2021
, “
Automatic Detection and Classification of Mammograms Using Improved Extreme Learning Machine With Deep Learning
,”
IRBM
,
6
, pp.
22
34
.
16.
Zhang
,
X.
,
Han
,
P.
,
Xu
,
L.
,
Zhang
,
F.
, and
Gao
,
L.
,
2020
, “
Research on Bearing Fault Diagnosis of Wind Turbine Gearbox Based on 1DCNN-PSO-SVM
,”
IEEE Access
,
8
, pp.
192248
192258
.
17.
Shi
,
P.-M.
,
Liang
,
K.
,
Zhao
,
N.
, and
An
,
S.-J.
,
2018
, “
Fault Diagnosis of Wind Turbine Gearbox Bearing Based on Fractal Dimension and GA-SVM
,”
Acta Metrol. Sin.
,
39
(
1
), pp.
61
65
.
18.
Wang
,
Y.
,
Liu
,
J.
,
Li
,
R.
,
Suo
,
X.
, and
Lu
,
E.
,
2020
, “
Precipitation Forecast of the Wujiang River Basin Based on Artificial Bee Colony Algorithm and Backpropagation Neural Network
,”
Alexandria Eng. J.
,
59
(
3
), pp.
1473
1483
.
19.
Jiankai
,
X.
, and
Bo
,
S.
,
2020
, “
A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm
,”
Syst. Sci. Control Eng.
,
8
(
1
), pp.
22
23
.
20.
Li
,
X.
,
Wang
,
Z.
, and
Yan
,
J.
,
2019
, “
Prognostic Health Condition for Lithium Battery Using the Partial Incremental Capacity and Gaussian Process Regression
,”
J. Power Sources
,
421
, pp.
56
67
.
21.
Jiang
,
Y.
,
Zhang
,
J.
,
Xia
,
L.
, and
Liu
,
Y.
,
2020
, “
State of Health Estimation for Lithium-Ion Battery Using Empirical Degradation and Error Compensation Models
,”
Comput. Technol. J.
,
8
, pp.
123858
123868
.
22.
Saha
,
B.
,
Goebel
,
K.
,
Poll
,
S.
, and
Christophersen
,
J.
,
2009
, “
Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework
,”
IEEE Trans. Instrum. Meas.
,
58
(
2
), pp.
291
296
.
23.
Chen
,
L.
,
Paul
,
H.
,
Hua
,
Q.
,
Zhao
,
J.
, and
Xia
,
S.
,
2018
, “
Correntropy-based Robust Multilayer Extreme Learning Machines
,”
Pattern Recognit.
,
84
, pp.
357
370
.
24.
Hairui
,
W.
, and
Jianchuan
,
X.
,
2021
, “
Optimal Configuration of Distributed Generation Based on Sparrow Search Algorithm
,”
IOP Conf. Ser. Earth Environ. Sci.
,
647
, p.
012053
.
You do not currently have access to this content.