Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The state of health (SOH) of a battery is the main indicator of battery life. In order to improve the SOH estimation accuracy, a model framework for lithium-ion battery health state estimation with feature reconstruction and improved least squares support vector machine is proposed. First, the indirect health features (HF) are obtained by processing multiple health features extracted from the charging and discharging phases through principal component analysis to remove the information redundancy among multiple features. Subsequently, multiple smooth component subsequences of different frequencies are obtained by using variational modal decomposition to efficiently capture the overall downtrend and regeneration fluctuations of the data. Then, use the sparrow search algorithm to optimize the least squares support vector machine to build an estimation model, predict and superimpose the reconstructed fusion features of multiple feature subsequences. Finally, use the mapping relationship between the reconstructed HF and the SOH for the estimation. The NASA battery dataset and the University of Maryland battery dataset (CACLE) are used to perform validation tests on multiple batteries with different cycle intervals. The results show that the mean absolute error and root mean square error are less than 1% and the method has high-estimation accuracy and robustness.

References

1.
Shahjalal
,
M.
,
Roy
,
P. K.
,
Shams
,
T.
,
Fly
,
A.
,
Chowdhury
,
J. I.
,
Ahmed
,
M. R.
, and
Liu
,
K.
,
2022
, “
A Review on Second-Life of Li-Ion Batteries: Prospects, Challenges, and Issues
,”
Energy
,
241
, p.
122881
.
2.
Rahimi-Eichi
,
H.
,
Ojha
,
U.
,
Baronti
,
F.
, and
Chow
,
M.-Y.
,
2013
, “
Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles
,”
IEEE Ind. Electron. Mag.
,
7
(
2
), pp.
4
16
.
3.
Bian
,
X.
,
Liu
,
L.
, and
Yan
,
J.
,
2019
, “
A Model for State-of-Health Estimation of Lithium Ion Batteries Based on Charging Profiles
,”
Energy
,
177
, pp.
57
65
.
4.
Chen
,
M.
,
Ma
,
G.
,
Liu
,
W.
,
Zeng
,
N.
, and
Luo
,
X.
,
2023
, “
An Overview of Data-Driven Battery Health Estimation Technology for Battery Management System
,”
Neurocomputing
,
532
, pp.
152
169
.
5.
Wang
,
D.
,
Zhang
,
Q.
,
Huang
,
H.
,
Yang
,
B.
,
Dong
,
H.
, and
Zhang
,
J.
,
2022
, “
An Electrochemical–Thermal Model of Lithium-Ion Battery and State of Health Estimation
,”
J. Energy Storage
,
47
, p.
103528
.
6.
Song
,
Y.
,
Peng
,
Y.
, and
Liu
,
D.
,
2021
, “
Model-Based Health Diagnosis for Lithium-Ion Battery Pack in Space Applications
,”
IEEE Trans. Ind. Electron.
,
68
(
12
), pp.
12375
12384
.
7.
Yang
,
Y.
,
Zeng
,
H.
,
Wang
,
D.
,
Wu
,
Y.
,
Chen
,
J.
,
Huang
,
Y.
,
Wang
,
P.
, and
Feng
,
W.
,
2023
, “
Fractal Growth of Quasi Two-Dimensional Copper Dendrites by Template-Free Electrodeposition
,”
Langmuir
,
39
(
8
), pp.
3045
3051
.
8.
Yang
,
Q.
,
Ma
,
K.
,
Xu
,
L.
,
Song
,
L.
,
Li
,
X.
, and
Li
,
Y.
,
2022
, “
A Joint Estimation Method Based on Kalman Filter of Battery State of Charge and State of Health
,”
Coatings
,
12
(
8
), p.
1047
.
9.
Wu
,
T.
,
Liu
,
S.
,
Wang
,
Z.
, and
Huang
,
Y.
,
2022
, “
SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm
,”
J. Electr. Eng. Technol.
,
17
(
1
), pp.
307
317
.
10.
Bi
,
J.
,
Zhang
,
T.
,
Yu
,
H.
, and
Kang
,
Y.
,
2016
, “
State-of-Health Estimation of Lithium-Ion Battery Packs in Electric Vehicles Based on Genetic Resampling Particle Filter
,”
Appl. Energy
,
182
, pp.
558
568
.
11.
Zhang
,
M.
,
Yang
,
D.
,
Du
,
J.
,
Sun
,
H.
,
Li
,
L.
,
Wang
,
L.
, and
Wang
,
K.
,
2023
, “
A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms
,”
Energies
,
16
(
7
), p.
3167
.
12.
Tang
,
X.
,
Wang
,
Y.
,
Liu
,
Q.
, and
Gao
,
F.
,
2021
, “
Reconstruction of the Incremental Capacity Trajectories From Current-Varying Profiles for Lithium-Ion Batteries
,”
Iscience
,
24
(
10
), p.
103103
.
13.
Wang
,
Z.
,
Yuan
,
C.
, and
Li
,
X.
,
2021
, “
Lithium Battery State-of-Health Estimation Via Differential Thermal Voltammetry With Gaussian Process Regression
,”
IEEE Trans. Transp. Electrif.
,
7
(
1
), pp.
16
25
.
14.
Ma
,
B.
,
Yang
,
S.
,
Zhang
,
L.
,
Wang
,
W.
,
Chen
,
S.
,
Yang
,
X.
,
Xie
,
H.
,
Yu
,
H.
,
Wang
,
H.
, and
Liu
,
X.
,
2022
, “
Remaining Useful Life and State of Health Prediction for Lithium Batteries Based on Differential Thermal Voltammetry and a Deep-Learning Model
,”
J. Power Sources
,
548
, p.
232030
.
15.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
,
Fahmy
,
Y.
, and
Emadi
,
A.
,
2022
, “
A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health From Charge Profiles
,”
Energies
,
15
(
3
), p.
1185
.
16.
Tagade
,
P.
,
Hariharan
,
K. S.
,
Ramachandran
,
S.
,
Khandelwal
,
A.
,
Naha
,
A.
,
Kolake
,
S. M.
, and
Han
,
S. H.
,
2020
, “
Deep Gaussian Process Regression for Lithium-Ion Battery Health Prognosis and Degradation Mode Diagnosis
,”
J. Power Sources
,
445
(
Jan.
), p.
227281
.
17.
Li
,
Y.
,
Li
,
K.
,
Liu
,
X.
, and
Zhang
,
L.
,
2020
, “
Fast Battery Capacity Estimation Using Convolutional Neural Networks
,”
Trans. Inst. Meas. Control
, pp.
1
14
.
18.
Go
,
H.-N.
,
Lee
,
S.-B.
, and
Kim
,
E.-J.
,
2021
, “
LSTM Model-Based SOH Prediction for Lithium-Ion Battery
,”
J. Dig. Contents Soc.
,
22
(
4
), pp.
697
703
.
19.
Zhao
,
Q.
,
Qin
,
X.
,
Zhao
,
H.
, and
Feng
,
W.
,
2018
, “
A Novel Prediction Method Based on the Support Vector Regression for the Remaining Useful Life of Lithium-Ion Batteries
,”
Microelectron. Reliab.
,
85
, p.
108
.
20.
Zhou
,
D.
,
Yin
,
H.
,
Fu
,
P.
,
Song
,
X.
,
Lu
,
W.
,
Yuan
,
L.
, and
Fu
,
Z.
,
2018
, “
Prognostics for State of Health of Lithium-Ion Batteries Based on Gaussian Process Regression
,”
Math. Probl. Eng.
,
2018
(
1
), pp.
1
11
.
21.
Wu
,
Y.
,
Xue
,
Q.
,
Shen
,
J.
,
Lei
,
Z.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2020
, “
State of Health Estimation for Lithium-Ion Batteries Based on Healthy Features and Long Short-Term Memory
,”
IEEE Access
,
8
(
1
), pp.
28533
28547
.
22.
Xia
,
F.
,
Wang
,
K.
, and
Chen
,
J.
,
2022
, “
State-of-Health Prediction for Lithium-Ion Batteries Based on Complete Ensemble Empirical Mode Decomposition With Adaptive Noise-Gate Recurrent Unit Fusion Model
,”
Energy Technol.
,
10
(
4
), p.
0767
.
23.
Pan
,
W.
,
Chen
,
Q.
,
Zhu
,
M.
,
Tang
,
J.
, and
Wang
,
J.
,
2020
, “
A Data-Driven Fuzzy Information Granulation Approach for Battery State of Health Forecasting
,”
J. Power Sources
,
475
, p.
228716
.
24.
Chen
,
H.
,
Li
,
J.
,
Gao
,
J.
,
Sun
,
Y.
,
Hu
,
Y.
, and
Yin
,
B.
,
2019
, “
Maximally Correlated Principal Component Analysis Based on Deep Parameterization Learning
,”
ACM Trans. Knowl. Discov. Data
,
13
(
4
), pp.
1
17
.
25.
Miao
,
Y.
,
Zhao
,
M.
, and
Lin
,
J.
,
2019
, “
Identification of Mechanical Compound-Fault Based on the Improved Parameter-Adaptive Variational Mode Decomposition
,”
ISA Trans.
,
84
, pp.
82
95
.
26.
Ahmad
,
A. S.
,
Hassan
,
M. Y.
,
Abdullah
,
M. P.
,
Rahman
,
H. A.
,
Hussin
,
F.
,
Abdullah
,
H.
, and
Saidur
,
R.
,
2014
, “
A Review on Applications of ANN and SVM for Building Electrical Energy Consumption Forecasting
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
102
109
.
27.
Feng
,
X.
,
Weng
,
C.
,
He
,
X.
,
Han
,
X.
,
Lu
,
L.
,
Ren
,
D.
, and
Ouyang
,
M.
,
2019
, “
Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine
,”
IEEE Trans. Veh. Technol.
,
68
(
9
), pp.
8583
8592
.
28.
Guo
,
Y.
,
Yang
,
D.
,
Zhang
,
Y.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
Online Estimation of SOH for Lithium-Ion Battery Based on SSA-Elman Neural Network
,”
Prot. Control Mod. Power Syst.
,
7
(
1
), p.
40
.
29.
Khumprom
,
P.
, and
Yodo
,
N.
,
2019
, “
A Data-Driven Predictive Prognostic Model for Lithium-Ion Batteries Based on a Deep Learning Algorithm
,”
Energies
,
12
(
4
), p.
660
.
You do not currently have access to this content.