Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The estimation of remaining useful life (RUL) for lithium-ion batteries is an essential part for a battery management system. A hybrid method is presented which is combining principal component analysis (PCA), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), sparrow search algorithm (SSA), Elman neural network (Elman NN), and gaussian process regression (GPR) to forecast battery RUL. First, in the data preprocessing stage, the PCA + ICEEMDAN algorithm is creatively proposed to extract features of capacity decay and fluctuation. The PCA method is used to reduce the dimensionality of the extracted indirect health indicators (HIs), and then the ICEEMDAN algorithm is introduced to decompose the fused HI sequence and actual capacity data into residuals and multiple intrinsic mode functions (IMFs). Second, in the prediction stage, feature data are corresponded one-to-one with the mixed model. The prediction models of SSA–Elman algorithm and GPR algorithm are established, with the SSA–Elman algorithm predicting the capacity decay trend and the GPR algorithm quantifying the uncertainty caused by the capacity regeneration phenomenon. The final prediction results are obtained by superimposing the two sets of prediction data, and the prediction error and RUL are calculated. The effectiveness of the proposed hybrid approach is validated by RUL prediction experiments on three kinds of batteries. The comparative experimental results indicate that the mean absolute error (MAE) and root mean square error (RMSE) of the presented prediction model for lithium-ion battery capacity are less than 0.7% and 1.0%.

References

1.
Sharma
,
P.
, and
Bora
,
B. J.
,
2022
, “
A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries
,”
Batteries
,
9
(
1
), p.
13
.
2.
Ge
,
M.-F.
,
Liu
,
Y.
,
Jiang
,
X.
, and
Liu
,
J.
,
2021
, “
A Review on State of Health Estimations and Remaining Useful Life Prognostics of Lithium-Ion Batteries
,”
Measurement
,
174
, p.
109057
.
3.
Zhou
,
D.
,
Li
,
H.
,
Li
,
Z.
, and
Zhang
,
C.
,
2022
, “
Toward the Performance Evolution of Lithium-Ion Battery Upon Impact Loading
,”
Electrochim. Acta
,
432
, p.
141192
.
4.
Li
,
H.
,
Zhou
,
D.
,
Zhang
,
M.
,
Liu
,
B.
, and
Zhang
,
C.
,
2023
, “
Multi-field Interpretation of Internal Short Circuit and Thermal Runaway Behavior for Lithium-Ion Batteries Under Mechanical Abuse
,”
Energy
,
263
, p.
126027
.
5.
Martinez
,
C. M.
,
Hu
,
X.
,
Cao
,
D.
,
Velenis
,
E.
,
Gao
,
B.
, and
Wellers
,
M.
,
2016
, “
Energy Management in Plug-In Hybrid Electric Vehicles: Recent Progress and a Connected Vehicles Perspective
,”
IEEE Trans. Veh. Technol.
,
66
(
6
), pp.
4534
4549
.
6.
Li
,
H.
,
Zhou
,
D.
,
Cao
,
J.
,
Li
,
Z.
, and
Zhang
,
C.
,
2023
, “
On the Damage and Performance Degradation of Multifunctional Sandwich Structure Embedded With Lithium-Ion Batteries Under Impact Loading
,”
J. Power Sources
,
581
, p.
233509
.
7.
Li
,
X.
,
Yu
,
D.
,
Vilsen
,
S. B.
, and
Store
,
D. I.
,
2023
, “
The Development of Machine Learning-Based Remaining Useful Life Prediction for Lithium-Ion Batteries
,”
J. Energy Chem.
,
82
, pp.
103
121
.
8.
Zhao
,
J.
,
Zhu
,
Y.
,
Zhang
,
B.
,
Liu
,
M.
,
Wang
,
J.
,
Liu
,
C.
, and
Hao
,
X.
,
2023
, “
Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium-Ion Batteries
,”
Sustainability
,
15
(
6
), p.
5014
.
9.
Xu
,
Q.
,
Wu
,
M.
,
Khoo
,
E.
,
Chen
,
Z.
, and
Li
,
X.
,
2023
, “
A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life
,”
IEEE/CAA J. Autom. Sin.
,
10
(
1
), pp.
177
187
.
10.
Cui
,
Y.
,
Shi
,
J.
, and
Wang
,
Z.
,
2015
, “
Quantum Assimilation-Based State-of-Health Assessment and Remaining Useful Life Estimation for Electronic Systems
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2379
2390
.
11.
Wu
,
L.
,
Fu
,
X.
, and
Guan
,
Y.
,
2016
, “
Review of the Remaining Useful Life Prognostics of Vehicle Lithium-Ion Batteries Using Data-Driven Methodologies
,”
Appl. Sci.
,
6
(
6
), p.
166
.
12.
Hasib
,
S. A.
,
Islam
,
S.
,
Chakrabortty
,
R. K.
,
Ryan
,
M. J.
,
Saha
,
D. K.
,
Ahamed
,
M. H.
,
Moyeen
,
S. I.
, et al., “
2021
, “
A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management
,”
IEEE Access
,
9
, pp.
86166
86193
.
13.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120501
.
14.
Chu
,
A.
,
Allam
,
A.
,
Arenas
,
A. C.
,
Rizzoni
,
G.
, and
Onori
,
S.
,
2020
, “
Stochastic Capacity Loss and Remaining Useful Life Models for Lithium-Ion Batteries in Plug-In Hybrid Electric Vehicles
,”
J. Power Sources
,
478
, p.
228991
.
15.
Wu
,
Y.
,
Li
,
W.
,
Wang
,
Y.
, and
Zhang
,
K.
,
2019
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Using Neural Network and Bat-Based Particle Filter
,”
IEEE Access
,
7
, pp.
54843
54854
.
16.
Duan
,
B.
,
Zhang
,
Q.
,
Geng
,
F.
, and
Zhang
,
C.
,
2020
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Based on Extended Kalman Particle Filter
,”
Int. J. Energy Res.
,
44
(
3
), pp.
1724
1734
.
17.
El Mejdoubi
,
A.
,
Chaoui
,
H.
,
Gualous
,
H.
,
Van Den Bossche
,
P.
,
Omar
,
N.
, and
Van Mierlo
,
J.
,
2018
, “
Lithium-Ion Batteries Health Prognosis Considering Aging Conditions
,”
IEEE Trans. Power Electron.
,
34
(
7
), pp.
6834
6844
.
18.
Guha
,
A.
, and
Patra
,
A.
,
2018
, “
Online Estimation of the Electrochemical Impedance Spectrum and Remaining Useful Life of Lithium-Ion Batteries
,”
IEEE Trans. Instrum. Meas.
,
67
(
8
), pp.
1836
1849
.
19.
Su
,
C.
, and
Chen
,
H.
,
2017
, “
A Review on Prognostics Approaches for Remaining Useful Life of Lithium-Ion Battery
,”
IOP Conference Series: Earth and Environmental Science
,
Kunming, China
,
Sept. 22–25
, Vol.
93
, IOP Publishing, p.
012040
.
20.
Hu
,
X.
,
Jiang
,
J.
,
Cao
,
D.
, and
Egardt
,
B.
,
2015
, “
Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
2645
2656
.
21.
Ma
,
Y.
,
Yao
,
M.
,
Liu
,
H.
, and
Tang
,
Z.
,
2022
, “
State of Health Estimation and Remaining Useful Life Prediction for Lithium-Ion Batteries by Improved Particle Swarm Optimization-Back Propagation Neural Network
,”
J. Energy Storage
,
52
, p.
104750
.
22.
Li
,
W.
,
Jiao
,
Z.
,
Du
,
L.
,
Fan
,
W.
, and
Zhu
,
Y.
,
2019
, “
An Indirect RUL Prognosis for Lithium-Ion Battery Under Vibration Stress Using Elman Neural Network
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12270
12276
.
23.
Li
,
X.
,
Shu
,
X.
,
Shen
,
J.
,
Xiao
,
R.
,
Yan
,
W.
, and
Chen
,
Z.
,
2017
, “
An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles
,”
Energies
,
10
(
5
), p.
691
.
24.
Liu
,
D.
,
Zhou
,
J.
,
Pan
,
D.
,
Peng
,
Y.
, and
Peng
,
X.
,
2015
, “
Lithium-Ion Battery Remaining Useful Life Estimation With an Optimized Relevance Vector Machine Algorithm With Incremental Learning
,”
Measurement
,
63
, pp.
143
151
.
25.
Jia
,
J.
,
Liang
,
J.
,
Shi
,
Y.
,
Wen
,
J.
,
Pang
,
X.
, and
Zeng
,
J.
,
2020
, “
SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression With Indirect Health Indicators
,”
Energies
,
13
(
2
), p.
375
.
26.
Guo
,
Y.
,
Yang
,
D.
,
Zhang
,
Y.
,
Wang
,
L.
, and
Wang
,
K.
,
2022
, “
Online Estimation of SOH for Lithium-Ion Battery Based on SSA–Elman Neural Network
,”
Prot. Control Mod. Power Syst.
,
7
(
1
), p.
40
.
27.
Lin
,
Z.
,
Cai
,
Y.
,
Liu
,
W.
,
Bao
,
C.
,
Shen
,
J.
, and
Liao
,
Q.
,
2023
, “
Estimating the State of Health of Lithium-Ion Batteries Based on a Probability Density Function
,”
Int. J. Electrochem. Sci.
,
18
(
6
), p.
100137
.
28.
Zhou
,
Y.
, and
Huang
,
M.
,
2016
, “
Lithium-Ion Batteries Remaining Useful Life Prediction Based on a Mixture of Empirical Mode Decomposition and ARIMA Model
,”
Microelectron. Reliab.
,
65
, pp.
265
273
.
29.
Wu
,
W.
, and
Lu
,
S.
,
2023
, “
Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM
,”
IEEE Trans. Instrum. Meas.
,
72
, p.
3267362
.
30.
Dragomiretskiy
,
K.
, and
Zosso
,
D.
,
2013
, “
Variational Mode Decomposition
,”
IEEE Trans. Signal Process.
,
62
(
3
), pp.
531
544
.
31.
Wang
,
Y.
,
Pan
,
R.
,
Yang
,
D.
,
Tang
,
X.
, and
Chen
,
Z.
,
2017
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Based on Discrete Wavelet Transform
,”
Energy Proc.
,
105
, pp.
2053
2058
.
32.
Chen
,
L.
,
Wang
,
H.
,
Chen
,
J.
,
An
,
J.
,
Ji
,
B.
,
Lyu
,
Z.
,
Cao
,
W.
, and
Pan
,
H.
,
2020
, “
A Novel Remaining Useful Life Prediction Framework for Lithium-Ion Battery Using Grey Model and Particle Filtering
,”
Int. J. Energy Res.
,
44
(
9
), pp.
7435
7449
.
33.
Mao
,
L.
,
Xu
,
J.
,
Chen
,
J.
,
Zhao
,
J.
,
Wu
,
Y.
, and
Yao
,
F.
,
2020
, “
A LSTM-STW and GS-LM Fusion Method for Lithium-Ion Battery RUL Prediction Based on EEMD
,”
Energies
,
13
(
9
), p.
2380
.
34.
Li
,
X.
,
Ma
,
Y.
, and
Zhu
,
J.
,
2021
, “
An Online Dual Filters RUL Prediction Method of Lithium-Ion Battery Based on Unscented Particle Filter and Least Squares Support Vector Machine
,”
Measurement
,
184
, p.
109935
.
35.
Liu
,
K.
,
Shang
,
Y.
,
Ouyang
,
Q.
, and
Widanage
,
W. D.
,
2020
, “
A Data-Driven Approach With Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-Ion Battery
,”
IEEE Trans. Ind. Electron.
,
68
(
4
), pp.
3170
3180
.
36.
Zhang
,
C.
,
Zhao
,
S.
, and
He
,
Y.
,
2021
, “
An Integrated Method of the Future Capacity and RUL Prediction for Lithium-Ion Battery Pack
,”
IEEE Trans. Veh. Technol.
,
71
(
3
), pp.
2601
2613
.
37.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis
,”
Proc. R. Soc. Lond. Ser. A: Math Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
.
38.
Colominas
,
M. A.
,
Schlotthauer
,
G.
, and
Torres
,
M. E.
,
2014
, “
Improved Complete Ensemble EMD: A Suitable Tool for Biomedical Signal Processing
,”
Biomed. Signal Process. Control
,
14
, pp.
19
29
.
You do not currently have access to this content.