This study first proposes a simple constitutive model for viscoplasticity, which includes the elastic, plastic, and creep strains independently. The plastic strain is evaluated by the flow rule employing back stresses evolved with a Ziegler type of hardening rule. The creep strain is evaluated by the modified Norton’s law. The applicability of this constitutive model is evaluated with pure tensile tests, creep tests and cyclic tension-compression loading tests, to demonstrate the progress of viscoplastic deformation of 40Pb/60Sn solder alloys. The tests were conducted over both several temperature ranges and strain rates. As a result, it was found that the material constants used in the constitutive model could be determined by simple tests such as pure tensile and cyclic tension-compression loading tests. The simulation by the constitutive model explains accurately the viscoplastic deformation of the 40Pb/60Sn solder alloys.

1.
Shine, M. C., and Fox, L. R., 1988, “Fatigue of Solder Joints in Surface Mount Devices,” Low-Cycle Fatigue, ASTM STP 942, H. D. Solomon et al., eds., ASTM, Philadelphia, Pa, pp. 588–610.
2.
Solomon
,
H. D.
,
1989
, “
Strain-Life Behavior in 60/40 Solder
,”
ASME J. Electron. Packag.
,
111
, pp.
75
82
.
3.
Satoh
,
R.
,
Arakawa
,
K.
,
Harada
,
M.
, and
Matsui
,
K.
,
1991
, “
Thermal Fatigue Life of Pb-Sn Alloy Interconnections
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
14
, No.
1
, pp.
224
231
.
4.
Pao
,
Y.-H.
,
Govila
,
R.
,
Badgley
,
S.
, and
Jih
,
E.
,
1993
, “
An Experimental and Finite Element Study of Thermal Fatigue Fracture of PbSn Solder Joints
,”
ASME J. Electron. Packag.
,
115
, pp.
1
8
.
5.
Vaynman
,
S.
, and
McKeown
,
S.-A.
,
1993
, “
Energy-Based Methodology for Fatigue Life Prediction of Solder Materials
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
16
, pp.
317
322
.
6.
Solomon
,
H. D.
, and
Tolksdorf
,
E. D.
,
1995
, “
Energy Approach to the Fatigue of 60/40 Solder: Part I-Influence of Temperature and Cycle Frequency
,”
ASME J. Electron. Packag.
,
117
, pp.
130
135
.
7.
Subbarayan
,
G.
,
1996
, “
A Procedure for Automated Shape and Life Prediction in Flip-Chip and BG Solder Joints
,”
ASME J. Electron. Packag.
,
118
, pp.
127
133
.
8.
Guo
,
Z.
, and
Conrad
,
H.
,
1996
, “
Effect of Microstructure Size on Deformation Kinetics and Thermo-Mechanical Fatigue of 63Sn37Pb Solder Joints
,”
ASME J. Electron. Packag.
,
118
, pp.
49
54
.
9.
Shiratori, M., and Yu, Q., 1997, “Life Assessment of Solder Joint,” Advances in Electronic Packaging, EEP Vol. 19-2, ASME, New York, pp. 1471–1477.
10.
Kitano, M., and Honda, M., 1997, “Shape Prediction of Solder Bump Joint by Surface Tension Analysis and Fatigue Strength Evaluation,” Advances in Electronic Packaging 1997, EEP Vol. 19-2, ASME, New York, pp. 1407–1412.
11.
Ishikawa
,
H.
,
Sasaki
,
K.
, and
Ohguchi
,
K.
,
1996
, “
Prediction of Fatigue Failure of 60Sn-40Pb Solder Using Constitutive Model for Cyclic Viscoplasticity
,”
ASME J. Electron. Packag.
,
118
, pp.
164
169
.
12.
Paydar
,
N.
,
Tong
,
Y.
, and
Akay
,
H. U.
,
1994
, “
A Finite Element Study of Factors Affecting Fatigue Life of Solder Joints
,”
ASME J. Electron. Packag.
,
116
, pp.
265
273
.
13.
Bhatti
,
P. K.
,
Gschwend
,
K.
,
Kwang
,
A. Y.
, and
Syed
,
R. A.
,
1995
, “
Three-Dimensional Creep Analysis of Solder Joints in Surface Mount Device
,”
ASME J. Electron. Packag.
,
117
, pp.
20
25
.
14.
Ling
,
S.
, and
Dasgupta
,
A.
,
1997
, “
A Nonlinear Multi-Domain Thermomechanical Stress Analysis Method for Surface-Mount Solder Joints—Part II: Viscoplastic Analysis
,”
ASME J. Electron. Packag.
,
119
, pp.
177
182
.
15.
Fu
,
C.
,
McDowell
,
D. L.
, and
Ume
,
I. C.
,
1998
, “
A Finite Element Procedure of a Cyclic Thermoviscoplasticity Model for Solder and Copper Interconnects
,”
ASME J. Electron. Packag.
,
120
, pp.
24
34
.
16.
Ohno
,
N.
,
Kawabata
,
M.
, and
Naganuma
,
J.
,
1990
, “
Aging Effects on Monotonic Stress-Paused, and Alternating Creep of Type 304 Stainless Steel
,”
Int. J. Plast.
,
6
, pp.
315
327
.
17.
Lee
,
K. D.
, and
Krempl
,
E.
,
1991
, “
Uniaxial Thermomechanical Loading. Numerical Experiments Using the Thermal Viscoplasticity Theory Based on Overstress
,”
Eur. J. Mech. A/Solids
,
10
, pp.
173
192
.
18.
Freed
,
A. D.
, and
Walker
,
K. P.
,
1993
, “
Viscoplasticity with Creep and Plastic Bounds
,”
Int. J. Plast.
,
9
, pp.
213
242
.
19.
Kawai
,
M.
,
1994
, “
A Constitutive Model for Anisotropic Creep Deformation
,”
ASME J. Eng. Mater. Technol.
,
116
, pp.
142
147
.
20.
Skipor
,
A. F.
,
Harren
,
S. V.
, and
Botsis
,
J.
,
1996
, “
On the Constitutive Relationship of 63/37 Sn/Pb Eutectic Solder
,”
ASME J. Eng. Mater. Technol.
,
118
, pp.
1
8
.
21.
Chang
,
F. S.
,
Song
,
Y.
,
Lu
,
D. X.
, and
DeSilva
,
C. N.
,
1998
, “
Unified Constitutive Equations of Foam Materials
,”
ASME J. Eng. Mater. Technol.
,
120
, pp.
212
217
.
22.
Maciucescu
,
L.
,
Sham
,
T.-L.
, and
Krempl
,
E.
,
1999
, “
Modeling the Deformation Behavior of a Sn-Pb Solder Alloy Using the Simplified Viscoplasticity Theory Based on Overstress (VBO)
,”
ASME J. Electron. Packag.
,
121
, pp.
92
92
.
You do not currently have access to this content.