The effort described herein extends the use of least-material single rectangular plate-fin analysis to multiple fin arrays, using a composite Nusselt number correlation. The optimally spaced least-material array was also found to be the globally best thermal design. Comparisons of the thermal capability of these optimum arrays, on the basis of total heat dissipation, heat dissipation per unit mass, and space claim specific heat dissipation, are provided for several potential heat sink materials. The impact of manufacturability constraints on the design and performance of these heat sinks is briefly discussed.

1.
Bar-Cohen
,
A.
,
1992
, “
State-Of-The-Art and Trends in the Thermal Packaging of Electronic Equipment
,”
ASME J. Electron. Packag.
,
114
, pp.
257
270
.
2.
Kern, D. Q., and Kraus, A. D., 1972, Extended Surface Heat Transfer, McGraw-Hill, New York, NY.
3.
Iyengar, M., 2003, Ph.D. thesis in preparation, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.
4.
Zhao
,
Z.
, and
Avedisian
,
C. T.
,
1997
, “
Enhancing Forced Air Convection Heat Transfer from an Array of Parallel Plate Fins Using a Heat Pipe
,”
Int. J. Heat Mass Transf.
,
40
(
13
), pp.
3135
3147
.
5.
Garner, S. D., and Toth, J. E., 1997, “Heat Pipes: A Practical and Cost Effective Method for Maximizing Heat Sink Effectiveness,” ASME EEP-Vol. 19-2, pp. 1897–1902.
6.
Ben Achour, M. F., and Bar-Cohen, A., 1999, “Heat Sink Optimization for Maximum Performance and Minimum Mass,” ASME EEP-Vol. 26-1, pp. 737–744.
7.
Elenbaas
,
W.
,
1942
, “
Heat Dissipation of Parallel Plates by Free Convection
,”
Physica (Utrecht)
,
9
(
1
), pp.
665
671
.
8.
McAdams, W. H., 1954, Heat Transmission, McGraw-Hill, New York, NY.
9.
Karagiozis
,
A.
,
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
,
1994
, “
Natural Convection Heat Transfer from Arrays of Isothermal Triangular Fins in Air
,”
ASME J. Heat Transfer
,
116
, pp.
105
111
.
10.
Burmeister, L., 1993, Convective Heat Transfer, Second Edition, John Wiley & Sons, New York, NY.
11.
Incropera, F., and DeWitt, W., 1996, Introduction to Heat Transfer, Third Edition, John Wiley & Sons, New York, NY.
12.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate
,”
Int. J. Heat Mass Transf.
,
18
, pp.
1323
1329
.
13.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, Third Edition, McGraw-Hill, New York, NY.
14.
Bar-Cohen
,
A.
, and
Rohsenow
,
W.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
, pp.
116
122
.
15.
Raithby, G. D., and Hollands, K. G. T., 1998, “Natural Convection,” Handbook of Heat Transfer, eds., W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, McGraw-Hill, New York, NY, Chap. 4, pp. 33–34.
16.
Yovanovich
,
M. M.
,
1987
, “
Natural Convection from Isothermal Spheroids in the Conductive to Laminar Flow Regimes
,”
AIAA Pap.
, AIAA-87-1587.
17.
Yovanovich, M. M., 1987, “On the Effect of Shape, Aspect Ratio, and Orientation upon Natural Convection from Isothermal Bodies,” ASME HTD-Vol. 82.
18.
Lee
,
S.
,
Yovanovich
,
M. M.
, and
Jafarpur
,
K.
,
1991
, “
Effects of Geometry and Orientation on Laminar Natural Convection from Isothermal Bodies
,”
J. Thermophys. Heat Transfer
,
5
, pp.
208
216
.
19.
Culham, J. R., Yovanovich, M. M., and Lee, S., 1994, “Thermal Modeling of Isothermal Cuboids and Rectangular Heat Sinks Cooled by Natural Convection,” InterSociety Conference on Thermal Phenomena (ITHERM), pp. 73–82.
20.
Wang
,
C. S.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
1999
, “
General Model for Natural Convection: Application to Annular-Fin Heat Sinks
,”
ASME J. Electron. Packag.
,
121
(
1
), pp.
44
49
.
21.
Microelectronics Heat Transfer Laboratory Website (Online Tools, Circular and Square Annular Heat Sinks): http://www.mhtl.uwaterloo.ca/old/onlinetools/nat_hs/ann_hs/input.html
22.
Microelectronics Heat Transfer Laboratory Website (Online Tools, Rectangular Plate-Fin Heat Sinks): http://www.mhtl.uwaterloo.ca/old/onlinetools/nat_hs/rect_hs/input.html
23.
Bar-Cohen
,
A.
,
1979
, “
Fin Thickness for an Optimized Natural Convection Array of Rectangular Fins
,”
ASME J. Heat Transfer
,
101
, pp.
564
566
.
24.
Kraus, A. D., and Bar-Cohen, A., 1995, Design and Analysis of Heat Sinks, John Wiley & Sons, New York, NY.
25.
Bar-Cohen
,
A.
, and
Jelinek
,
M.
,
1986
, “
Optimum Arrays of Longitudinal, Rectangular Fins in Convective Heat Transfer
,”
Heat Transfer Eng.
,
6
(
3
), pp.
68
78
.
26.
Kraus, A. D., Aziz, A., and Welty, J., 2001, Extended Surface Heat Transfer, John Wiley & Sons, New York, NY.
27.
Aziz
,
A.
,
1992
, “
Optimum Dimensions of Extended Surfaces Operating in a Convective Environment
,”
Appl. Mech. Rev.
,
45
(
5
), pp.
155
173
.
28.
Bilitzky, A., 1986, “The Effect of Geometry on Heat Transfer by Free Convection from a Fin Array,” MS thesis, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
29.
Kraus, A. D., and Morales, H. J., 1983, “Case for the Magnesium Heat Sink, Proceedings of the Technical Program—National Electronic Packaging and Production,” Cahners Exposition Group, Des Plaines, IL, pp. 102–112.
30.
Brown, J. F., Riopelle, L., and Shirazi, S. A., 1993, “Magnesium Heat Sink Evaluations, Magnesium Properties and Applications for Automobiles,” SAE Special Publications, Warrendale, PA, no. 962, pp. 27–36.
You do not currently have access to this content.