Abstract

This study presents an approximation for determining an optimized thickness of a concentric heated rectangular plate and derives an analytical solution for spreading resistance of a spreader having orthotropic conductivities. The solution for the orthotropic plate is obtained by separation of variables, and the optimized thickness is determined by taking the derivative of the thermal resistance with respect to the spreader thickness. According to the calculated results, an enhanced in-plane spreading effect can reduce the spreading resistance. The spreading resistance dominates the overall resistance of thin plates, whereas the one-dimensional conduction resistance becomes important for thick plates. However, the predicted optimized thickness from the approximation shows a disparity from the analytical results, while the aspect ratio between a spreader and heat source is less than 0.2. Even so, the thermal resistance corresponding to the predicted thickness is still in good agreement with the analytical solution. The proposed approximation will be useful for practical thermal design of heat sinks by predetermining the spreader thickness.

1.
Kennedy
,
D. P.
, 1960, “
Spreading Resistance in Cylindrical Semiconductor Devices
,”
J. Appl. Phys.
0021-8979,
31
, pp.
1490
1497
.
2.
Negus
,
K. J.
, and
Yovanovich
,
M. M.
, 1984, “
Constriction Resistance of Circular Flux Tubes With Mixed Boundary Conditions by Linear Superposition of Neumann Solutions
,”
NHTC
, Niagara Falls, NY, ASME Paper No. 84-HT-84, pp.
1
6
.
3.
Negus
,
K. J.
, and
Yovanovich
,
M. M.
, 1984, “
Application of the Method of Optimised Images to Steady Three-Dimensional Conduction Problems
,”
ASME Winter Annual Meeting
, New Orleans, LA, ASME Paper No. 84-WA/HT-110, pp.
1
11
.
4.
Song
,
S.
,
Lee
,
S.
, and
Au
,
V.
, 1994, “
Closed-Form Equation for Thermal Constriction/Spreading Resistances With Variable Resistance Boundary Condition
,”
Proceedings of the 1994 International Electronics Packaging Conference
, Atlanta, GA, pp.
111
121
.
5.
Lee
,
S.
,
Song
,
S.
, and
Au
,
V.
, 1995, “
Constriction/Spreading Resistance Model for Electronic Packaging
,”
Proceedings of the 4th ASME/JSME Thermal Engineering Joint Conference
, Maui, HI, Vol.
4
, pp.
199
206
.
6.
Yovanovich
,
M. M.
, 2003, “
Thermal Resistances of Circular Source on Finite Circular Cylinder With Side and End Cooling
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
169
177
.
7.
Muzychka
,
Y. S.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Influence of Geometry and Edge Cooling on Thermal Spreading Resistance
,”
J. Thermophys. Heat Transfer
0887-8722,
20
, pp.
247
255
.
8.
Krane
,
M. J. M.
, 1991, “
Constriction Resistance in Rectangular Bodies
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
392
396
.
9.
Yovanovich
,
M. M.
,
Muzychka
,
Y. S.
, and
Culham
,
J. R.
, 1999, “
Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Channel
,”
J. Thermophys. Heat Transfer
0887-8722,
13
, pp.
495
500
.
10.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2003, “
Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels
,”
ASME J. Electron. Packag.
1043-7398,
125
, pp.
178
185
.
11.
Karmalkar
,
S.
,
Mohan
,
P. V.
, and
Kumar
,
B. P.
, 2005, “
A Unified Compact Model of Electrical and Thermal 3-D Spreading Resistance Between Eccentric Rectangular and Circular Contacts
,”
IEEE Electron Device Lett.
0741-3106,
26
, pp.
909
912
.
12.
Chen
,
Y. S.
,
Chien
,
K. H.
,
Wang
,
C. C.
,
Hung
,
T. C.
,
Ferng
,
Y. M.
, and
Pei
,
B. S.
, 2007, “
Investigations of the Thermal Spreading Effects of Rectangular Conduction Plates and Vapor Chamber
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
348
355
.
13.
Yovanovich
,
M. M.
,
Culham
,
J. R.
, and
Teerstra
,
P.
, 1998, “
Analytical Modeling of Spreading Resistance in Flux Tubes, Half Spaces, and Compound Disks
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
21
, pp.
168
176
.
14.
Muzychka
,
Y. S.
,
Stevanovic
,
M.
, and
Yovanovich
,
M. M.
, 2001, “
Thermal Spreading Resistances in Compound Annular Sectors
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
354
359
.
15.
Culham
,
J. R.
,
Yovanovich
,
M. M.
, and
Lemczyk
,
T. F.
, 2000, “
Thermal Characterization of Electronic Packaging Using a Three-Dimensional Fourier Series Solution
,”
ASME J. Electron. Packag.
1043-7398,
122
, pp.
233
239
.
16.
Desai
,
A.
,
Geer
,
J.
, and
Sammakia
,
B.
, 2006, “
“Models of Steady Heat Conduction in Multiple Cylindrical Domains
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
10
17
.
17.
Geer
,
J.
,
Desai
,
A.
, and
Sammakia
,
B.
, 2007, “
Heat Conduction in Multilayered Rectangular Domains
,”
ASME J. Electron. Packag.
1043-7398,
129
, pp.
440
451
.
18.
Muzychka
,
Y. S.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2004, “
Thermal Spreading Resistance in Compound and Orthotropic Systems
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
45
51
.
19.
Lam
,
T. T.
,
Fischer
,
W. D.
, and
Cabral
,
P. S.
, 2004, “
Analysis of Thermal Resistance of Orthotropic Materials for Heat Spreaders
,”
J. Thermophys. Heat Transfer
0887-8722,
18
, pp.
203
208
.
20.
Lehtinen
,
A.
, and
Karvinnen
,
R.
, 2006, “
Transient Operation of Plate-Fin Heat Sink
,”
Proceedings of the 13th International Heat Transfer Conference, MTH-04
, Sydney, Australia.
You do not currently have access to this content.